PUNJAB ALKALIES AND CHEMICALS LTD. NANGAL-UNA ROAD, NAYA NANGAL. PUNJAB

ENVIRONMENTAL STATEMENT FOR THE YEAR 2019-2020

M. 2019/ 01

September, 2020

PREPARED BY

05, VISHAL BHAWAN, 95 NEHRU PLACE, NEW DELHI – 110 0 PH. (011) 26429294/5/6, FAX: (011) 26842531 E-mail: <u>envmantec@yahoo.co.in</u> <u>www.mantecconsultants.com</u>

Chapter	Title	Page No.
	FORM-V	01-09
	DETAILED REPORT	10-48
1.	EXECUTIVE SUMMARY	11-12
	PREAMBLE	13
	2.1 General	13
2.	2.2 Brief Company Profile	13
	2.3 Location	13
	MANUFACTURING PROCESS	14-16
	3.1 General	14
	3.2 Manufacturing Process by Membrane Cell Technology	14
	3.2.1 Salt Handling & Brine Treatment	14
	3.2.2 Brine Clarification	14
	3.2.3 Brine Filtration and Polishing	14
	3.2.4 Secondary Brine Purification	15
3.	3.2.5 Electrolyser Section	15
	3.2.6 Chlorate Destruction	15
	3.2.7 Catholyte and Hydrogen	15
	3.2.8 Hydrogen Handling	16
	3.2.9 Chlorine Handling & Filling	16
	3.2.10 Hydrochloric Acid Unit	16
	3.2.11 Sodium Hypochlorite Production	16
	PRODUCTION IN THE YEAR OF 2017-2018	17-17
4.	4.1 Products	17
	MATERIAL BALANCE	18-22
5.	5.1 Sodium Hydroxide Unit	18
J.	5.2 Chlorine Balance	19
	5.3 Hydrogen Balance	19

CONTENTS

	5.4 Hydrochloric Acid Plant	20
	5.5 Sodium Hypochlorite Plants	21
	5.6 Water Balance	21
	POLLUTION GENERATION	22-28
(6.1 Industrial Liquid Emission (Waste Water)	22
6.	6.2 Industrial Gaseous Emissions	24
	6.3 Solid Wastes	25-26
	POLLUTION CONTROL	29-48
	7.1 Effluent Treatment	29
	7.2 Air Pollution Control	34
	7.3 Solid Waste Generation (Brine Sludge)	39
7.	7.4 Non-Hazardous Waste Storage (Brine Sludge from Mercury Process)	39
	7.5 Hazardous Waste Generation	39
	7.6 Ground Water Quality Monitoring	39
	7.7 Pollution control testing laboratory in PACL	50-51
	7.8 Noise Level Monitoring Inside The Plant	52
0	ENERGY CONSUMPTION FOR POLLUTION CONTROL	53-53
8	8.1 Energy Consumption	53
9.	BY-PRODUCT RECOVERY	54
10.	AFFORESTATION	55-57

LIST OF TABLES

Table No.	Title	
4.1	Production Details (2019-2020)	17
5.1	Material Balance	18
5.2	Chlorine Balance	19
5.3	Hydrogen Balance	19
5.4	Hydrochloric Acid	20
5.5	Sodium Hypochlorite Plants	21
5.6	Water Balance	21
6.1	Water Utilization Statement	22
6.2	Process Water Quality (2019-2020)	22
6.3	Treated Effluent Quality (Per Month)	23
6.4	Treated Effluent Quality (2019-2020)	24
6.5	Stack Monitoring Data, (Monthly)	25
6.6	Source of Air Emission and Pollution Load in Unit-I & II, (2019-2020)	25
6.7	Quantity of Sludge from PACL Solid Waste (Brine Sludge) Per Month	27
6.8	Quantity of Sludge from PACL Solid Waste (Brine Sludge) Per Month	28
6.9	Average Quality of Brine Sludge Generated During year (2019-2020)	28
7.1	Treated Effluent (2019-2020)	33
7.2	Ambient Air Monitoring Data Monthly	37
7.3	Average Annual Ambient Air Data (2019-2020)	38
7.4	Ambient Air Location	38
7.6(1)	The Physico-Chemical Quality of Hand Pump, located Near gate No.1	40-41
7.6(2)	The Physico-Chemical Quality of Hand Pump, located at Horticulture Nursery	42-43
7.6(3)	The Physico-Chemical Quality of Hand Pump near NFL Boundary	44-45
7.6(4)	The Physico-Chemical Quality of Hand Pump, located apposite Stores	46-47
7.6(5)	The Physico-Chemical Quality of Hand Pump near Raw Water Storage Tank	48-49
7.7 (1)	List of Instruments/Equipments in Pollution Control Laboratory	50
7.8	Noise Level Monitoring Inside the Plant	51
8.1.1	Energy Consumption for Pollution Control For the Period April 2019- to March 2020	52-53

LIST OF FIGURES

Figure No.	Title	Page No.
7.1	Flow Charts -Effluent Treatment Plant, Unit-I	31
7.2	Schematic Diagram for Effluent Treatment Plant, Unit-II	34

Environmental statement for the financial year ending the 31^{st} March 2020

PART-A

1.	Name and address of the owner /	:	Sh. Naveen Chopra
	occupier of the industrial operation		Director
	or process		M/s Punjab Alkalies and Chemicals Ltd.
			Naya Nangal,
			District – Ropar
			Punjab
2.	Industry Category	:	Large
	Primary-(STC Code)		
	Secondary (SIC Code)		2812
3.	Production Capacity	:	
	Unit – I		100 TPD Caustic Soda
	Unit - II		200 TPD Caustic Soda
4.	Year of Establishment	:	Plant commissioned in 1984
5.	Date of the last Environmental	:	28 st February, 2019
	Statement submitted		

PART-B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption (m³/year)

348900	
683482	
27375	
Process wate	er consumption per unit
Of product o	output
During the previous	During the current
Financial year	financial year
(2018-2019)	(2019-2020)
1	2
	683482 27375 Process wate Of product of During the previous Financial year (2018-2019)

(i) CAUSTIC SODA LYE

4.065 M³/MT

3.894 M³/MT

(ii) Raw Material Consumption

*Name of Raw Materials	Name of Products	Consumption of raw material per uni of output (MT/Year)	
		During the previous financial year (2018-2019)	During the current financial year (2019-2020)
Salt	Caustic soda	1.590	1.590
Soda Ash	Caustic soda	0.0028	0.0022
Barium Carbonate	Caustic soda	0.0079	0.0076
Hydrogen	Hydrochloric acid	0.009502	0.008215
Chlorine	Hydrochloric acid	0.2562	0.2215
Chorine Tailings	Sodium hypo chloride	0.0999	0.0967
Caustic Soda Lye	Caustic Soda	0.04046	0.0448

* Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

PART-C

Pollution Discharged to Environment/unit of Output (PARAMETER AS SPECIFIED IN THE CONSENT GRANTED)

UNIT-I

	Pollutants	Quantity of pollutants discharged (mass/day)	Concentration of pollutants in discharges (mass/volume)	Prescribed Standards	Percentage of variation from prescribed standards with reason
(a)	Water	Zero Discharge			
	рН	-	7.53	5-9	Within limits
	Total Suspended Solids	3.24 kg/day	25.00 mg/l	100 mg/l	(+)25.0
(b)	Air				
	Hypo stack Chlorine	0.0019 kg/day	9.72 mg/Nm ³	15 mg/Nm ³	(+)64.8
	HCl vent, HCl content	0.00201 kg/day	10.08 mg/Nm ³	35 mg/Nm ³	(+)28.5

+ve indicates % variation w.r.t standards (within limits)

PART-C (CONTD.)

Pollution Discharged to Environment/unit of Output (PARAMETER AS SPECIFIED IN THE CONSENT GRANTED)

UNIT-2

Pollutants		Quantity of pollutants discharged (mass/day)	Concentration of pollutants in discharges (mass/volume)	Prescribed Standards	Percentage of variation from prescribed standards with reason
(a)	Water	Zero Discharge			
	рН	-	7.53	5-9	Within limits
	Total Suspended Solids	3.24 kg/day	25.00 mg/l	100 mg/l	(+)25.0
(b)	Air				
	Hypo stack Chlorine	0.0019 kg/day	9.79 mg/Nm ³	15 mg/Nm ³	(+)65.2
	HCl vent, HCl content	0.0019 kg/day	9.98 mg/Nm ³	35 mg/Nm ³	(+)28.5

+ve indicates % variation w.r.t standards (within limits)

PART-D

HAZARDOUS WASTES

(As specified under Hazardous Wastes (Management and Handling) Rules, 2000)

Hazardous Wastes	Total Quantity	(Kg)
	During the previous Financial year (2018-2019)	During the Current financial year (2019-2020)
(a) From process		
(i) Used Transformer Oil(ii) Used Lubricating Oil	5742 Liters NIL	222 Liters NIL
(iii) Used Furnace Oil	NIL	NIL
(b) From pollution control facilitie	es NIL	NIL

PART-E

SOLID WASTES (NON HAZARDOUS)

	Total Quantity (ON DRY BASIS MT)		
	During the previous	During the Current	
	financial year	financial year	
	(2018-2019)	(2019-2020)	
(a) From process			
	2036.29	1813	
(b) From pollution control facilities (from tanks/vessels)	Nil	Nil	
(c) (1) quantity recycled or re- utilised within the unit(2) SoldDisposed	Nil	Nil	

PART-F

Sl. No.	Parameter	Unit	Membrane Cell, Unit-I	Membrane Cell, Unit-II
1.	Loss on Drying (Water)	%	33.14	32.94
2.	NaCl	%	12.01	11.75
3.	Calcium as CaCO3	%	11.34	11.32
4.	Magnesium as Mg(OH)2	%	8.74	9.22
5.	Acid insoluble	%	34.77	34.79

CHARACTERISTICS OF SOLID WASTES (BRINE SLUDGE)

QUANTITY OF SOLID WASTE (BRINE SLUDGE) ON DRY BASIS

Solid waste	Unit-I	Unit-II	Total
Brine Sludge from Drum Filter /Decanter(MT)	122.861	302.788	425.649
Brine Sludge from Brine sludge Pits, MT	161.273	1031.322	1192.595
Precipitation Tanks / Vessels, MT		37.151	37.151
Sludge from salt saturator MT	-	88.25	88.25
MEE Sludge	69.65		69.65
Total Solid waste Generated, MT	353.784	1459.511	1813.295

PART-G

M/s Punjab Alkalies and Chemicals Ltd., Naya Nangal, has taken pollution control measures since commissioning of the plant. Though several pollution control measures have been taken by them, still efforts are on to preserve natural resources. In the manufacturing process of sodium hydroxide, chlorine gas is produced as a by-product. A major portion of the gas is processed and liquefied to liquid chlorine for sale. The other major portion is utilized in the production of hydrochloric acid. The tail chlorine gas from all the sections of plant such as chlorine liquefaction, chlorine storage, chlorine filling etc. are neutralized in the caustic soda solution resulting in the formation of sodium hypochlorite liquor.

Automatic chlorine detectors have been installed around the industry to check any chlorine leakage.

The management of industry is alive to necessity of the conservation of natural resources. In the continued efforts, the industry has planted many trees and shrubs in its drive for afforestation.

PART-H

The management of industry is quite conscious of the issues of environmental protection. Number of measures has been taken by the industry to protect the environment as detailed below:-

- 1. The waste HCl generated during regenerating of ION Exchange Column going to the ETP, which was neutralized with caustic soda/lime solution for pH adjustment. Now the above waste acid is being collected in storage tank and reused in the ETP for pH adjustment. This has been adopted in both units.
- 2. The brine drained during sample collection at various points was earlier passing to the ETP increasing the chloride and TDS content. The same has now been recirculated and reused in the system.
- 3. In the precipitated tank area the pump gland leakages was also passing to the ETP. The same is stopped totally and this also has reduced the TDS load in the ETP.
- 4. Continuous recording of effluent discharged with graphs in Control Room.
- 5. Tanker inspection platform provided.
- 6. Company is certified under ISO 9001:2008 and ISO 14001, 2004.
- 7. System for pre-treatment of chlorine section effluent is installed and the same is taken to ETP for further treatment.
- 8. Three new high volume samplers and one handy sampler are procured replacing the old ones.
- 9. Periodic measurement and monitoring of sound level at various locations inside the Plant has been implemented to control sound pollution.
- 10. The additional sod. Hypo tower installed in sod .hypo plant to scrub all the waste chlorine gas in complete soda so for capacity of the sod. Hypo plant U-2 is increased.
- 11. A green belt has been developed in side the plant premises.
- 12. All the solid sludge (Brine sludge) are stored in side the plant premises.
- 13. Proper storage facilities provided to store used lubricating oil as transformer oil (hazardous waste)
- 14. The mercury bearing brine sludge generated from 1984-1998 with mercury cells stored in side the plant premises in impervious brine sludge pit no.1 as referred under non-hazardous waste (Management & Handling) 1989. Now PPCB has declared it as Non-Hazardous Waste Brine Sludge.

PART-I (Any other particulars for improving the quality of the environment.)

Detailed Report Enclosed

CHAPTER - 1

EXECUTIVE SUMMARY

- For preparation of Environmental Statement (Environmental Audit) for the assessment year 2019-2020, M/s Punjab Alkalies and Chemicals Ltd., Nangal-Una Road, Naya Nangal, Punjab retained M/s. Mantec Consultants Pvt. Ltd., New Delhi.
- M/s. Punjab Alkalies and Chemicals Ltd. are manufacturing Caustic Soda Lye as the principal product, Chlorine and Hydrogen as co-products and Hydrochloric Acid, Sodium Hypochlorite and Spent Sulphuric Acid as by-products.
- Detailed manufacturing process for the production of principal and by products has been described in this Environmental Statement. Different manufacturing units have been dealt with individually, giving chemical reactions of various processes.
- A statement of quality and quantities of raw material, consumed vis-a-vis products and by-products manufactured has been projected.
- Material balancing of raw material utilized and products & by-products manufactured has been carried out and mentioned in the report. Tables clearly giving the inputs & outputs have been presented. Such balancing indicates that negligible quantities of raw material, products and by-products are coming out in the form of waste. On the whole, the materials are getting balanced comprehensively.
- The quality and quantity of pollution generated in the form of liquid, solid and gaseous emissions have been assessed. Their method of treatment and disposal has been described as pollution control measures.

It has been observed that the air emissions coming out of the treatment facilities conform to the prescribed standards. Satisfactory measures have been adopted for the storage of sludge generated from the process and treatment facilities.

• Impacts of such pollution control measures have been assessed and described. The study reveals that with such measures there are no negative impacts on different environmental media viz. Ground water, surface

water, soil, atmosphere, flora & fauna. There are no cultural site/ ancient monuments, etc in the vicinity of the industry.

- Energy consumption for air and water pollution control equipment for the year 2018-2019 has been detailed.
- The industry has well taken care the area of development of vegetation. The management has planted about 6600 trees/shrubs.
- The management of the industry being conscious of environmental protection has taken several steps in this direction and have made several significant achievements.
- Overall, the industry is doing well for conserving the environment and has taken the appropriate steps for controlling the pollution levels.

CHAPTER-2

PREAMBLE

2.1 GENERAL

In pursuance of the Gazette Notification No. 155.GSR383(E) dated 28th April, 1993 by Govt. of India, Department of Environment, Ministry of Environment & Forests (MoEF), M/s Punjab Alkalies & Chemicals Ltd. (PACL), Naya Nangal, appointed M/s. Mantec Consultants Pvt. Ltd., New Delhi for carrying out Environmental Audit (Presently called Environmental Statement), under the provision of Law. This report has been prepared on the basis of data / information furnished by the industry.

2.2 BRIEF COMPANY PROFILE

M/s. Punjab Alkalies and Chemicals Ltd. (PACL), Naya Nangal, is a Chlor-alkali unit, manufacturing Sodium Hydroxide (Caustic Soda) from Sodium Chloride (Brine) by electrolytic process, generating the attendant by- products viz., chlorine hydrogen, hydrochloric acid and bleach liquor (sodium hypochlorite).

The plant was commissioned in January 1984 at a cost of Rs 35 crores, with technical collaboration from Uhde-Gmbh, Germany with a production capacity of 33,000 TPA of Caustic soda. Due to the enhanced market potential, PACL augmented caustic soda production capacity from 33,000 TPA to 40,730 TPA in 1989-90 and subsequently it was further increased to 73,750 TPA in the year 1995-96 by installing 100 TPD membrane cell plant. The membrane cell plant

converted to 200 TPD from 170 TPD in the year 1998. The present production capacity of the plant is approximately 99,000 TPA.

The management being conscious for the welfare of its employees has provided facilities of a canteen, rest room, personal protective equipment etc. By way of perks, canteen allowance, liveries and washing allowances have been granted to the entitled employees.

2.3 LOCATION

The Punjab Alkalies & Chemicals Ltd., Naya Nangal complex is located west of Sutlej River, 1 km from Nangal-Una State Highway No. 22. It is 16 km from Bhakra Dam, on a sprawling plot area of approximately 35 hectares (86 acres), with corporate office at Chandigarh.

CHAPTER – 3 <u>MANUFACTURING PROCESS</u>

3.1 **GENERAL**

The basic ingredients for the manufacture of main products (Caustic soda, chlorine & hydrogen) and by-products (hydrochloric acid, sodium hypo-chlorite is sodium chloride (common salt) and water.

Detailed manufacturing processes of products and by-products are as follows:-

3.2 MANUFACTURING PROCESS BY MEMBARANE CELL TECHNOLOGY

3.2.1 Salt Handling & Brine Treatment

For the manufacture of sodium hydroxide, principal raw material is industrial grade sodium chloride. This salt of approximately 97% purity, procured mainly from Gujarat is transported to the plant by railway wagons & trucks. The salt unloaded inside the factory is manually transferred to the salt yard from where it is fed to the saturators through bucket elevators. The saturated brine of about 310 gm/liter concentration flows to the precipitation tank, where the impurities of calcium, magnesium, sulphates, iron and other insoluble contents are removed by treating it with chemicals like soda ash, caustic soda, barium carbonate and flocal. The treated brine flows to the clarifier where the impurities are allowed to settle and removed as sludge.

3.2.2 Brine Clarification

From the precipitation tank, the brine overflows to the central inlet of the clarifier. Here, a definite quantity of flocculent solution is mixed with the brine. In the clarifier, the major portion of solids is removed from the brine and are discharged from the underflow to the vacuum drum filter. From the clarified brine tank, it is pumped to the anthracite filters.

3.2.3 Brine Filtration and Polishing

To remove any residual solid impurities, the clarifier brine is filtered through two stage of filtration: First Stage of Filtration : Anthracite Filters

i ii st stage of i intration	•	minimuence i meers
Second Stage of filtration	:	Polishing Filters

Polished brine is collected in a polished brine tank and is pumped through a recuperator in order to heat the brine to 65° C (approximately).

3.2.4 Secondary Brine Purification

From the brine recuperator, the polished brine is sent to the secondary purification section. This section serves to remove the calcium and magnesium cations still contained in the brine to the residual content of less than 30ppb. The brine is purified in two ion exchange columns connected in series. The pure brine passes to the brine head tank via brine heat exchangers which serve to heat brine during the start up and also serve to cool brine during shut down.

3.2.5 Electrolyser Section

Pure brine of 310 ± 10 gm per liter NaCl is fed to anodic side of electrolyser. Membrane, which is partition between anodic and cathodic cells, selectively allows only Na ions and does not allow OH and Cl ions to pass through. Also 3-4 moles of H2O per mole of Na+ ions penetrate through membrane towards cathodic side (cathode is of Nickel and anode is of Titanium construction). Cl evolves at anodic side and H₂ evolves on cathodic side. Anolyte coming out ofthe cells is of 200-220 gm/liter i.e. depletion is 90-110 gm/liter of NaCl. A portionof the catholyte is pumped to caustic concentration unit for further concentrationof the product to 47.5% from 32 ± 2 %. Anolyte from cells is passed to anolyte tank, which after dechlorination and pH adjustments, termed as lean brine, is pumped to the brine saturators.

3.2.6 Chlorate Destruction

To a purge stream of anolyte, HCl is added and heat is applied through steam. This causes the chlorate to break up to give chlorine, which is sent to the chlorine system. The acidified anolyte free from chlorate is sent back to the anolyte steam.

3.2.7 Catholyte and Hydrogen

Catholyte and H₂ mixture from catholyte side of electrolysers are sent to the catholyte tank from where 32-33 % caustic is pumped to the storage tanks and a part of it is pumped back to the electrolyser through a cooler after adding DM water to it. Hydrogen is separated in a catholyte header itself and is sent for processing. H₂ is cooled in a heat exchanger to about 45^o C and is sent to demister through a safety vessel and is finally transferred to HCl synthesis unit and to other destinations like boiler, flakers and bottling units.

3.2.8 Hydrogen Handling

Hydrogen gas is separated from catholyte and is pumped from gasholder to (i) HCl plant for making hydrochloric acid, (ii) to fusion plant for the use as a fuel (iii) a neighboring hydrogen bottling plant and (iv) to the boiler.

3.2.9 Chlorine Handling and Filling

Chlorine liberated in the anode compartment of the electrolyser is saturated with anolyte and the same after separation is treated in the chlorine section of the plant. In this section the gas is cooled, dried with sulphuric acid and compressed to a pressure of 3.2 Kg/ cm². The compressed gas is liquefied in the liquefier using freon 22 as refrigerant. The liquid chlorine flows to one of the four insulated MS storage bullets. From the bullets, tonners are filled with 900 Kg. Chlorine, inspected and tested before dispatch.

3.2.10 Hydrochloric Acid Unit

A portion of chlorine gas after Cl2 compressors is diverted to HCl plant and is burnt with hydrogen gas in a furnace to form hydrochloric acid following the reaction given below:

 $H_2 + Cl_2 \longrightarrow 2HCl$

The HCl vapours are absorbed in water to form 30-33% HCl. The residual unabsorbed HCl gas coming out of the primary absorber is now absorbed in water in the tail gas absorber forming weak acid which flows to primary absorber to form concentrated acid. HCl is stored in three FRP/MS rubber lined tanks.

3.2.11 Sodium Hypochlorite Production

In this section of the plant, fugitive chlorine gases from all sources are taken for neutralization with caustic soda to form sodium hypochlorite bleach liquor so that the chlorine emission to the environment is eliminated. This not only minimizes the emissions of dangerous chlorine to the atmosphere but also adds to revenue generation. The process involves the following reactions:

Sodium hypochlorite (NaOCl)

2NaOH + Cl2 ---- NaOCl + NaCl + H2O

CHAPTER -4

PRODUCTION IN THE YEAR OF 2019-2020

4.1 **PRODUCTS**

List of products manufactured by PACL with quantities as reported by the management, are given below in Table - 4.1

<u> Table - 4.1</u>

PRODUCTION DETAILS

S. No.	Name of the Product	Units	Production in the year
1.	Caustic Soda Lye Gross (Net Production)	МТ	90645.265 (86583.491)
2	Liquid Chlorine	МТ	65198.288
4	Hydrochloric Acid	МТ	53499.436
5	Hydrogen gas	Nm ³	25380674.8
6	Sodium Hypochlorite	МТ	18843.010

CHAPTER-5

MATERIAL BALANCE

5.1 SODIUM HYDROXIDE UNIT

5.1.1 Input / Output Statement for the year 2019-2020

	Annual Input			Annual Output		
Sl. No.	Input	Unit	Quantity	Output	Unit	Quantity
i.	Salt	MT	144125.863	NaOH	МТ	86583.491
ii.	Soda Ash	МТ	203.750	Cl ₂ (gas)	МТ	80311.705
iii.	Barium Carbonat	MT	689.456	H ₂	Nm3	25380674.8
iv.	Flocculants	KGS	2050.000	Liquid Chlorine	МТ	65198.288
v.	Water	KL	11296.32	SodiumHypo	МТ	18843.01
vi.				Hydrochloric Acid	МТ	53499.436

5.1.2 Material Balancing for the year 2019-2020

a.	Basis						
i.	$2NaCl + 2H_2O$	\rightarrow	2NaOH	+	Cl_2	+	H_2
	116.91 + 36.032	\rightarrow	80.016	+	70.91	+	2.016
ii.	Average Purity of crude	e NaCl = 9	98.80%				
iii.	Average cell efficiency	= 95	% (Unit I-9	95%,	Unit II-9	5%)	

b. Calculation

Pure NaCl available in crude salt 144125.863 x 0.965 per annum= 139081.4578

Product	Calculation based on stoichiometric equation	Theoretical Production (MT)	Actual Production (MT)	Percentage Variation
NaOH	(139081.4578x 80.016 / 116.91) x 0.922	87765.803	91029.014	(+)3. 585%
Cl ₂ (gas)	(139081.4578x 70.91/116.91) x 0.922	77777.858	80651.700	(+)3.563%
H ₂	(139081.4578x 2.016 / 116.91) x 0.922	2211.255	2290.822	(+)3.473%

The variation in actual production is due to variation in current efficiency caused by deterioration in membrane conditions.

5.2 CHLORINE BALANCE

Generation	Quantity (MT)	Utilization	Quantity (MT)
Chlorine Gas Produced	80311.705	Production of liquid chlorine	65197.988
Chlorine gas from tonner purging	1448.445	Chlorine gas to HCl plant	14738.491
		Chlorine gas from process neutralized in Sod hypo plants	1823.671
Total chlorine generated	81760.150	Total chlorine utilized	81760.150

5.2.1 Chlorine Utilization Statement for the year 2019-2020

5.3 HYDROGEN BALANCE

5.3.1 Hydrogen Utilization Statement for the year 2019-2020

Generation)	Quantity(NM3)	Utilization (Nm ³)	Quantity(NM3)
H_2 Gas produced	25380674.8	H ₂ in HCl plant	6746777.0
		H ₂ dispatched	2282843.0
		H ₂ for Boilers	14555508.0
		H ₂ Vent	1795546.8
Total	25380674.8	Total	25380674.8

5.4 HYDROCHLORIC ACID PLANT

5.4.1 Input Output Statement for the year 2019-2020

Input	Quantity(MT)	Output	Quantity(MT)
Chlorine gas	14738.491	Hydrochloric acid	53499.436
Hydrogen gas	6746777	Average Conc.	30.20%
Water (DM Water)	-	HCl Content (100%)	16156.830

5.4.2 Material Balancing for the year 2019-2020

a. Basic

i. H ₂	+	Cl_2	\rightarrow	2HCl
2.016	+	70.91	\rightarrow	72.926

ii. Average concentration of product HCl = 30.20%

b. Calculation

 $(14738.491 \times 72.926 \times 100) / (30.20 \times 70.91) = 50190.437$

Theoretical Production (MT)	Actual Production (MT)	% age Variation	Remarks
50190.437	53759.027	(+) 8.457%	Concentration variation

5.4.3 Material Balancing for the year 2019-2020

Chlorine utilized for Sodium Hypo Product	=	1823.671	MT
Quantity of sodium hypochlorite liquor produced	=	18843.01	MT
Chlorine input in Sodium Hypochlorite liquor	=	1823.671	MT

2 NaOH + Cl₂ → NaOCl+NaCl+ H₂O

5.5 SODIUM HYPOCHLORITE PLANTS

Input	Input Quantity(MT)		Quantity(MT)
Chlorine gas for Sodium hypo	1823.671	Sodium Hypo Chlorite Liquor	18843.01
Caustic soda for Sodium hypo MT	3766.409		9.678%
Total chlorine input	1823.671	Total chlorine output	1823.671

5.5.1 Input Output Statement for the year 2019-2020

5.6 WATER BALANCE

5.6.1 Water Utilization Statement for the year 2019-2020

Input	Quantity (m ³)	Output	Quantity (m ³)
Water drawn from RIVER SATLUJ	1059757.00	Water consumed for process	348900
Water drawn from PACL Colony Bore well	307318.00	Domestic water consumption inside plant	27375
		Domestic water consumption in PACL Housing colony	307318
		Water consumed for Industrial cooling	683482
Total water drawn	1367075.00	Total water Utilization	1367075.00

CHAPTER-6

POLLUTION GENERATION

6.1 INDUSTRIAL LIQUID EMISSIONS (WASTE WATER)

6.1.1 Raw Water

The main source of raw water for M/s PACL, Naya Nangal is River Satluj flowing across the Naya Nangal town. As given in Table 6.1 the total waterconsumption of PACL for financial year 2019-2020

was 1059757m³ out of which 27375m³ was used for domestic purpose, 348900m³ was used in the process and 683482m³ was used for industrial cooling. Based on the data provided by PACL, the quality of process water is given at Table 6.1 Since there are substantial losses through evaporation in process of industrial cooling, the figure given above reflects only the make-up water. As on an average 40000 m³ per month of industrial cooling water from different units is recycled through cooling towers, the make-up water or evaporation losses workout to mere 3.5% of water recycled.

Table-6.1

Water Utilization Statement

Total water drawn in2018- Total water used in 2018-2		1059757 m ³
	Domestic	27375 m ³
	Process	348900 m ³
	Industrial Cooling	683482 m ³
		1059757 m ³

Table – 6.2
Process Water Quality
(2019-2020)

Sl. No.	Parameter	Concentration Values				
		Min.	Max.	Avg.		
1.	рН	6.9	7.7	7.3		
2.	Total Hardness as CaCO ₃	95	110	105		
3.	Chlorides as Cl	7.10	10.2	8.85		

Note:- Except pH all values are in mg/l

6.1.2 Effluent Generation

Approximately 129.485m³/day of waste water is generated from process which is discharged after treatment.

6.1.3 Effluent Treatment

M/s PACL consumed 27375 m³ of water for domestic purpose and 348900 m³ for process in 2019-2020. The characteristic of the process is given in Table-6.2. A part of this water is consumed and the remaining comes out as effluent. The month-wise characteristics showing minimum, maximum and average values of relevant parameters in process effluent are given at Table 6.3. These tables show that the characteristics of effluent after treatment are within the stipulated standards.

Table – 6.3

Month	рН	Total Suspended Solids (mg/l)	Total Residual Chlorine (mg/l)
April, 2019	7.6	24	Nil
May, 2019	7.5	25	Nil
June, 20199	7.6	25	Nil
July, 20199	7.6	26	Nil
August, 2019	7.6	24	Nil
September, 2019	7.5	24	Nil
October, 2019	7.6	25	Nil
November, 2019	7.5	26	Nil
December, 2019	7.5	26	Nil
January, 2020	7.6	25	Nil
February, 20220	7.6	26	Nil
March, 2020	7.6	27	Nil

Treated Effluent Quality (Per Month)

Table - 6.4

Treated Effluent Quality (2019-2020)

Sl. No.	Parameter	Concentration Values			
		Min.	Max.	Avg.	
1	рН	7.4	7.7	7.6	
2	Total Suspended solids	20	30	25.00	
3	Total Residual Chlorine	Nil	Nil	Nil	

Note:- Except pH all values are in mg/l

6.2 INDUSTRIAL GASEOUS EMISSIONS

6.2.1 Source of Gaseous Emission

Following are the source of gaseous emission from the industry.

- i. **HCl Plant:** In the hydrochloric acid plant, hydrogen and chlorine are burned to produce hydrochloric acid. During the process, there is a high probability of emission of vapors and mist of hydrochloric acid and unburned chlorine. To capture such emission, the secondary absorber has been provided. Residual chlorine in the tail gas is absorbed in water to make weak acid, which is fed to the primary absorber.
- ii. **Chlorine Gas:** In this plant unutilized gas from the process is fed to the waste air dechlorination unit where it is reacted with caustic solution to form sodium hypo separately. The capacity of the dechlorination units are sufficient to neutralize the waste gas of the plant. The emission of chlorine from hypo vent remains well within the limits.
- iii. **Boilers:** There are two oil/ H_2 fired boilers, having 10 MT and 5 MT capacity. Hydrogen gas, a by-product of the industry, is used as fuel along with fuel oil in the boilers which is a non polluting fuel. The design of the boilers is such that the resultant gaseous emissions are within the limits as prescribed by the regulatory agencies.

6.2.2 Emission Characteristics

The major gaseous pollutants emitted from PACL, Naya Nangal are hydrochloric acid vapor and mist from HCl plant, hydrogen from hydrogen vent and chlorine from hypo stack. The industry is continuously monitoring their stacks through out the year and results are submitted every month to Punjab Pollution Control Board. The emission characteristics of different stacks of Unit-I and Unit-II are given in Table 6.4 and 6.5.

TABLE-6.5

Month	Membrane C	ell, Unit-I	Membrane	Cell, Unit-II	
	Hypo Stack	HCL Stack	Hypo Stack	HCl Stack	
	Chlorine, mg/m ³	HCl, mg/m ³	Chlorine, mg/m ³	HCl, mg/m ³	
April, 2019	9.80	10.52	10.06	10.0	
May, 2019	9.89	10.08	9.55	9.82	
June, 2019	9.63	9.99	9.55	9.74	
July, 2019	9.27	10.04	9.56	10.14	
August, 2019	9.66	10.04	9.86	10.24	
September, 2019	9.47	10.04	9.76	10.04	
October, 2019	9.47	9.74	9.32	9.81	
November, 2019	9.47	10.04	9.56	9.89	
December, 20199	9.47	9.64	9.57	9.74	
January, 2020	9.66	10.24	9.66	9.84	
February, 2020	9.66	9.94	9.76	10.04	
March, 20200	9.47	10.70	9.76	10.45	

STACK MONITORING DATA (MONTHLY)

TABLE-6.6

SOURCES OF AIR EMISSIONS AND POLLUTION LOAD IN UNIT-I & II (2019-2020)

Sl. No.	Source of Air Pollution	PollutantAvg. Conc. of Pollutants (mg/Nm³)Pollution Load (I		0		ad (kg./day)
			Unit-I Unit-II		Unit-I	Unit-II
1.	HCI Vent	HCl	10.08	9.97	3.4X10^-5	3.44X10^-5
2.	Hypo Stack	Chlorine	9.72	9.72 9.79		3.35X10^-5

6.3 SOLID WASTE

6.3.1 Source

There is continuous generation of non-hazardous waste from the process of PACL. Following are the sources of its generation.

Sl. No.	Туре	Source
1.	Non-hazardous solid waste (Brine sludge)	Saturator Precipitation tank Chemical tank/pits Drum filter/Decanter Brine clarifier

6.3.2 Generation

The total non-hazardous waste generated from PACL for the assessment year 2019-2020 was **3825.567** MT(wet basis) and **2744.181 MT** (dry basis). The quantities of sludge generated from Unit-I and Unit-II from different sections are given in Table-6.7 and 6.8.

<u> Table – 6.7</u>

QUANTITY OF SLUDGE FROM PACL SOLID WASTE (BRINE SLUDGE) PER MONTH

Moth	Basis		Membra	ne Cell, Unit-I			Membra	ne Cell, Unit-II	
		Brine	Brine	Brine sludge	Sludge	Brine	Brine	Brine sludge	Sludge
		sludge	sludge	from	from	sludge	sludge	from	from
		from	from	precipitation	brine	from	from	precipitation	brine
		drum	brine	tanks/	saturator,	drum	brine	tanks /	saturator,
		filter/	sludge	vessels, MT	MT	filter/	sludge	vessels, MT	МТ
		decanter,	pits,			decanter,	pits,		
	XAZ	MT	MT	16 450		MT	MT	15 100	
April,2019	Wet	60.167	18.020	16.450		125.605	55.280	15.100	
-	Dry	36.100	10.800	9.200		75.363	32.427	8.775	25 020
May,2019	Wet	64.277	13.220			92.200	48.560		35.820
	Dry Wet	41.780	8.450 15.150			59.790 86.330	31.850 61.520	19.200	24.600
June,2019		43.339							
-	Dry	30.337 44.575	10.463	15 750	0.000	59.540 100.500	42.400	22.800	21.010
July,2019	Wet			15.758	0.000		75.748	17.167	21.818
July,2019	Dry	26.745 26.977		9.455	4.408	60.300	45.449	10.300	13.091
August,2019	Wet					82.220	81.800	12.400	15.389
	Dry Wet	17.535 24.000	4.000		2.865	53.170 75.086	53.170 70.286	8.003	10.003 22.171
September,2019		16.800	2.800			52.560	49.200		15.520
	Dry			17.205				24.800	15.520
October,2019	Wet	14.000 9.100	0.000	17.385 11.300		40.158 26.103	68.318	16.120	
	Dry Wet	36.934	19.831	3.824			44.407 58.191	15.294	4.412
November,2019		25.115	19.831	2.600		41.765 28.400	39.570	10.400	3.000
	Dry Wet	48.100	15.465	2.520	13.698	130.127	58.683	17.020	5.000
December,2019	Dry	30.200		1.570	8.630	81.980	36.970	10.200	
	Wet	15.538		1.370	0.030	188.100	19.350	34.000	15.538
January,2020	Dry	10.100				121.600	19.350	22.100	15.538
February,2020	Wet	9.735	5.669			142.344	80.024	13.971	10.100
	Dry	6.620	3.855			96.794	80.024 54.416	9.500	
	Wet	7.440	3.000	3.440		95.920	51.695	9.500	
March,2020		5.754		2.200		62.348	33.602	9.650	
	Dry	5./54		2.200		02.348	33.0UZ	9.050	

<u> Table – 6.8</u>

SOLID WASTE (BRINE SLUDGE)								
Sludge	Uni	it-I	Unit-II		Total			
	Wet (X1)	Dry (Y1)	Wet (X2)	Dry (Y2)	Wet (X1+X2)	Dry (Y1+Y2)		
Brine Sludge from Drum Filter/Decanter (MT)	395.082	256.186	1200.355	777.948	1595.437	1034.134		
Brine Sludge from brine sludge Pits, MT	75.890	49.853	729.455	476.861	805.345	526.714		
Brine Sludge from precipitation Tanks / Vessels, MT	59.377	36.325	183.798	127.848	243.175	164.173		
Sludge from brine saturator, MT	18.106	11.495	115.148	76.314	133.254	87.809		
Total Solid Waste Generated, MT	548.455	353.859	2228.756	1458.971	2777.211	1812.830		

QUANTITY OF SLUDGE FROM PACL SOLID WASTE (BRINE SLUDGE)

6.3.3 Characteristics of Solid waste generated.

Quality of solid wastes generated is continuously monitored and recorded. The characteristics of solid waste generated from various sections during the year 2019-2020 are given in table 6.9.

<u>Table - 6.9</u> <u>PUNJAB ALKALIES & CHEMICALS LTD.</u>

Average Quality of Brine Sludge Generated During Year 2019-2020

Sl. No.	Parameter	Unit	Membrane Cell, Unit-I	Membrane Cell, Unit-II
1	Loss on Drying (water)	%	33.14	32.94
2	NaCl	%	12.01	11.75
3	Calcium as CaCO3	%	11.34	11.32
4	Magnesium as Mg(OH)2	%	8.74	9.22
5	Acid insoluble	%	34.77	34.79

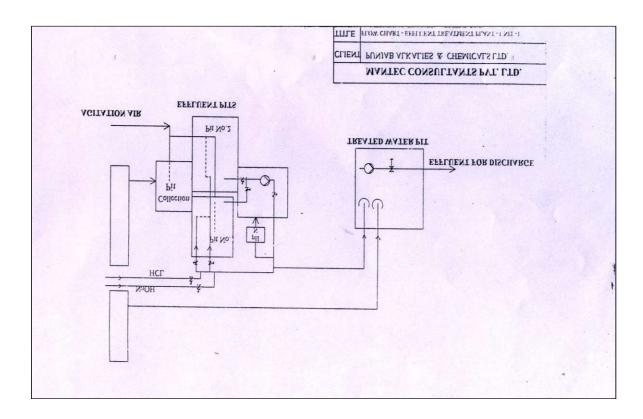
CHAPTER – 7

POLLUTION CONTROL

7.1 EFFLUENT TREATMENT

The industry has two process streams (Unit-I & Unit-II) to produce caustic soda and chlorine with membrane cell technology. Each process unit is having separate effluent treatment plant. The effluent from various sections such as Primary Brine Section, Secondary Brine Section, DM Water, Cell House, HCl Plant, Utility Section, Boiler Section etc., are taken to the effluent treatment plantthrough in-plant effluent collection channels. The streams may be acidic or alkaline in nature. There is no other contamination in the effluent. The effluent isneutralized by proper pH adjustment by adding caustic or HCl and is finally pumped to RO plant for further treatment and the return water from RO is used in green belt area irrigation inside the factory premises.

Effluent Treatment Plant in Unit-I


The flow diagram of effluent treatment plant is given in Fig. 7.1. Effluent treatment plant in unit-I has one collection pit, two settling chambers and one final chamber. Size and capacity of unit-I ETP is as under:

Pit/Chamber	Size		
Units	Length	Breadth	 Depth
Collection pit	1.3 M	1.3 M	2.1 M
Mixing cum settling chamber-I	7.75 M	5.70 M	3.3 M
Mixing cum settling chamber-II	7.75 M	5.70 M	3.3 M
Treatment Chamber	10.9 M	4.6 M	3.3 M

Treatment capacity: 500 m³/day

Effluent from various sections of Unit-I is collected in the collection pit and is taken to one of the two settling chambers where it is allowed to mix properly. Spurger's are provided for spurging compressed air. After proper mixing it is allowed to settle. One settling chamber remains under operation while the otheris kept as a standby, which is taken into line when last one is taken out for mixing and settling.

From the mixing cum settling chambers, the effluent is pumped to treatment chamber where a chemical such as caustic soda or HCl is added from overhead storage tank for pH adjustment of the effluent. pH is continuously monitored and the required caustic or hydrochloric acid is added. Air is passed through spurges provided in the chamber for proper mixing and it is circulated through a pump. The capacity of the pump is 40m³/hr. After the pH is maintained at round 8, the effluent is pumped through HDPE pipeline to RO plant for further purification to achieve the desired TDS value of less than 2100ppm. The RO return water is utilized inside the plant for irrigation purpose.

Fig 7.1 Flow Charts –Effluent Treatment Plant, Unit-1

Effluent Treatment Plant in Unit-II

The effluent treatment plant for Unit-II is given in Figure 7.2. The treatment plant has been renovated and following provisions has been made:

- a. Effluent treatment plant is divided into two sections and each section having 2 compartments. Effluent can be taken independently to each of the sections for treatment.
- b. Additional two pumps have been provided so that each section of ETP can be operated independently.
- c. Chemical dosing such as caustic soda and IICI, required for neutralization of acid/alkali is provided separately for each section of the ETP. Continuous pH measurements for determining the quality of effluent and also automatic flow measurements have been provided.

Size						
Length	Breadth	Depth				
4.0 M	5.58 M	2.35 M				
19.95 M	5.595 M	2.35 M				
	Length 4.0 M	LengthBreadth4.0 M5.58 M				

Details of effluent treatment plant

Treatment Capacity: 750 m³/day

There are two such units and each unit is taken for use alternatively. Effluent from all the sections of the plant is taken to the collection pit to one section of theETP through in-plant channels into effluent collection chamber are allowed to settle and the overflow from first chamber goes to 2nd chamber. After it is filled up, the incoming effluent to this section is stopped and the same is taken to the collection pit of the 2nd section of the ETP. Effluent taken to the 1st section is first mixed by spurging with compressed air for which one air compressor has been installed and spurging has been provided in the 2nd chamber. The effluent is circulated and the pH is maintained through on line pH analyzer. According to requirement, caustic and HCl is added to neutralize the effluent to get a pH value of 8. After reaching the desired pH, addition of alkali or acid is stoppedand the effluent is further circulated till constant pH is maintained.

Thereafter other parameters such as TDS, TSS, and chlorine are measured. If chlorine is found in excess then same is destroyed with sodium bisulphite. After the quality of the related effluent meets the desired specification, the same is pumped through HDPE pipe line to RO plant for further purification to achieve the desired TDS i.e. less than 2100 ppm and the return water from RO plant is used in green belt area for irrigation inside the factory premises.

To further check the effluent analysis are carried out at regular basis. The minimum, maximum and average values of the effluent from Unit-I and Unit-II are given in Table-7.1.

Table – 7.1

Sl. No.	Parameter	Concentration Values					
		Min.	Max.	Avg.			
1	pH	7.4	7.7	7.6			
2	Total Suspended solids	20	30	25.00			
3	Total Residual Chlorine	Nil	Nil	Nil			

Treated Effluent Quality (2019-2020)

Note:- Except pH all values are in mg/l

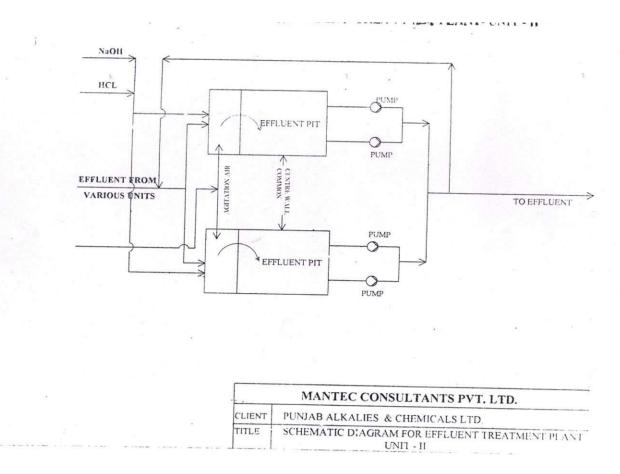


Fig 7.2 Schematic Diagram –Effluent Treatment Plant, Unit-II

7.2 AIR POLLUTION CONTROL

Chlorine gas and HCl fumes are the main sources of air pollution generated in the plant from various process streams, tanks, vessels, process equipments, pipe lines during manufacturing, storing or handling of chlorine etc. All the fugitive emissions of chlorine gas are sucked through a blower and are passed through waste air dechlorination unit where waste chlorine gas is neutralized with caustic soda solution. Similarly HCl fumes generated from the storage tank and during HCl preparation are taken to the above unit where it is neutralized with the alkali.

Chlorine gas produced in the electrolyzer is taken for cooling, drying, compression and liquefaction for making liquid chlorine. The unliquidified chlorine gas is known as sniff gas which is taken to HCl plant for burning with hydrogen to make HCl and the sniff gas which can not be burned in HCl plant is taken to waste air dechlorination units. If the hydrogen content in the chlorine is higher then the sniff gas will have higher percentage of hydrogen gas. Beyond 4% hydrogen in chlorine forms explosive mixture and therefore the liquefaction

efficiency is maintained to keep the hydrogen percentage in sniff chlorine gas below 4%. Thus, it is possible to liquify the gas to a maximum possible in membrane cell plant.

Under normal plant conditions, about 500 kgs. of chlorine gas is required to be neutralized in Unit-I and 1000 kgs of chlorine is required to be neutralized in Unit-II.

A unit wise detail of the air pollution treatment and control system is given below:

In the waste air dechlorination plant of Unit-I, there are three sodium hypo towers where caustic soda and chlorine reacts counter currently. The waste chlorine gas enters into the first tower and the caustic soda enters into third tower. The caustic overflows from the third tower, goes to second tower and the overflow from the second tower goes to the first tower. Chlorine reacts with the caustic in the first tower and forms sodium hypochlorite, which overflows to the sodium hypo receiver and is withdrawn periodically as a product. The unneutralized chlorine gas goes to the second tower where it reacts with caustic solution to make weak sodium hypo. The third tower acts as a buffer tower. In case, un-reacted chlorine gas leaves the second tower, then the same will get neutralized in that tower. In case of excess flow of chlorine to the first tower, the same is controlled/neutralized by automatic opening of caustic lye to the hypo tower no. I.

1. The flow of chlorine gas and caustic to the first tower is controlled by reduction

Potential which is measured continuously in the first tower.

2. Neutralization capacity of the plant	= 5 MT/day of chlorine gas
3. Caustic circulation pump capacity each	= 2 Nos. 20 m ³ /hour capacity
4. Hypo circulation pump capacity each Unit-II	= 3 nos. 60 m ³ /hour capacity

In the waste air dechlorination plant of unit-II there are three sodium hypo towers and two calcium hypo towers in series. Under normal plant operation, waste chlorine gas from all sections of the plant is first taken to the sodium hypo towers where sodium hypo chlorite is formed by absorbing chlorine gas incaustic soda lye. Sodium Hypo Chlorite is collected in receiver and is withdrawn periodically as a product. The unreacted chlorine gas is further passed to 2^{nd} and 3^{rd} tower for complete absorption in caustic soda lye and the final product is collected for sale. Similarly when the first sodium hypo tower gets exhausted the second hypo is taken in line.

- i. Neutralization capacity of sodium hypo plant = 532 kg/hr. chlorine gas
- ii. Neutralization capacity of calcium hypo plant = 500 kg/hr. chlorine gas
- iii. Pump capacity
- a. Sodium hypo circulation pump capacity = $3 \text{ nos. } 50 \text{ m}^3 / \text{hr. each}$
- b. Calcium hypo circulation pump capacity = 2 numbers of 50 m^3/hr capacity each.

HCI Vapors

Each HCI furnace is provided with tail gas absorber. HCI vapor from the first absorber of the HCI furnace is taken to the tail gas absorber where acid mist is absorbed in waste to make weak HCI acid, the same is fed to the first absorber.

HCI vapor from tanks is taken to the waste air dechlorination unit for neutralization through the exhaust blower and pipeline arrangement.

A new HCI absorber has been installed in unit II to absorb all the gas from the road tanker during filling.

In order to keep a watch on the emission from various stacks, periodic monitoring of emission is carried out. Apart from this, ambient air quality is alsomonitored from time to time. The average ambient quality monitored at PACL is given in Table-7.2.

<u> Table - 7.2</u>

	Location of							Parame	ter				
Month	Respirable dust sampler	ΡΜ_{10,} μg/m ³	PM _{2.5} , μg/m ³	SO ₂ , μg/m ³	NO ₂ , μg/m ³	CO , mg/ m ³	NH 3, μg/m ³	0 3, μg/m ³	Ρb μg/ m ³	As, μg/ m ³	Ni, μg/m ³	Banze ne	Benzo [a]pyren e
April, 2019	Railway siding area	38	26	22	26	0.4	164	32	Nil	Nil	Nil	Nil	Nil
May, 2019	Railway siding area	35	22	24	25	0.4	160	34	Nil	Nil	Nil	Nil	Nil
June, 2019	Railway siding area	34	24	22	24	0.5	156	36	Nil	Nil	Nil	Nil	Nil
July, 2019	Railway siding area	36	25	25	22	0.4	162	32	Nil	Nil	Nil	Nil	Nil
Aug. 2019	Railway siding area	32	22	22	24	0.4	160	34	Nil	Nil	Nil	Nil	Nil
Sep. 2019	Railway siding area	38	26	20	22	0.5	176	36	Nil	Nil	Nil	Nil	Nil
Oct. 2019	Railway siding area	34	24	22	20	0.4	162	32	Nil	Nil	Nil	Nil	Nil
Nov. 2019	Railway siding area	32	22	25	22	0.5	158	34	Nil	Nil	Nil	Nil	Nil
Dec. 2019	Railway siding area	35	20	20	24	0.4	160	36	Nil	Nil	Nil	Nil	Nil
Jan. 2020	Railway siding area	28	24	28	25	0.4	154	32	Nil	Nil	Nil	Nil	Nil
Feb. 2020	Railway siding area	22	28	22	20	0.5	162	36	Nil	Nil	Nil	Nil	Nil
March 2020	Railway siding area	24	26	24	24	0.4	156	30	Nil	Nil	Nil	Nil	Nil

PUNJAB ALKALIES & CHEMICALS LIMITED, NAYA NANGAL AMBIENT AIR MONITORING DATA (MONTHLY)

<u> Table – 7.3</u>

PUNJAB ALKALIES & CHEMICALS LIMITED, NAYA NANGAL AMBIENT AIR MONITORING DATA Average Annual data 2019-2020

Sl. No.	Location of High Volume Sampler	Parameters					
		Chlorine, μg/m³	HCl, µg/m³	SPM, $\mu g/m^3$			
1.	Railway Siding Area	NIL	NIL	69.95			
2.	Near Electrical Sub- station	NIL	NIL	69.50			
3.	Near South-west Boundary	NIL	NIL	70.03			

Note:- At all the locations, ambient air found within the prescribed limit (prescribed limit of SPM = $500 \ \mu g/m^3$)

For ambient air monitoring three locations were selected to cover the entire plant area. The distance, direction and position selected for high volume sampler are as follows:-

<u> Table – 7.4</u>

AIR MONITORING LOCATIONS

Sl. No.	Location	Distance from Centre of the Plant	Direction
1.	Railway siding area	300 meters	Е
2.	Electrical sub-stations	250 meters	Ν
3.	Near South–West Boundary	200 meters	S -W

7.3 SOLID WASTES GENERATION (BRINE SLUDGE)

The brine sludge presently generated in plant is non-hazardous as per Schedule – 1 of the hazardous waste Management & Handling Rules 2000 and the same is being stored in the old Calcium Hypo lagoon No-1.

7.4 NON HAZARDOUS WASTE STORAGE (BRINE SLUDGE FROM MERCURY PROCESS)

Approx 26642 M.T of Sludge generated earlier in Mercury cell process is stored in impervious brine sludge pit No-1 and the same is closed. It has been now declared as non-hazardous waste by PPCB.

7.5 HAZARDOUS WASTE GENERATION

(A) Used Transformer Oil and Used Lubricating Oil

Used transformer oil and used lubricating oil are the hazardous wastes generated from the process. These wastes are disposed by sale to authorized preprocessors under intimation to PPCB. Quantities of waste transformer oil and used lubricating oil generated during the year 2019-2020 are given below.

(i)	Used Transformer Oil	NIL Liter
()		

(ii) Used Lubricating Oil 222 Liter

7.6 GROUND WATER QUALITY MONITORING

Ground water samples from five hand pumps installed inside the plant Premises at locations authorized by Punjab Pollution Control Board are regularly tested twice in every month and reports submitted to PPCB on monthly basis.

Hand pump no.	Location
1	Near factory gate no. 1
2	Near Horticulture nursery
3	Near NFL boundary
4	Opposite stores building
5	Near raw water storage tank

Physio-chemical qualities of ground water from above hand pumps tested during the year 2018-2019 are detailed in tables 7.6 (1), 7.6(2). 7.6 (3), 7.6 (4) and 7.6(5)

<u>Table-7.6(1)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR GATE NO.1</u>

Parameter	April 2019		May 2019		June 2019		July 2019		August 2019		September 2019	
Date of Sampling	02.04.2019	26.04.2019	04.05.19	28.05.19	02.06.19	28.06.19	01.07.19	29.07.19	02.08.19	30.08.19	04.09.19	28.09.19
рН	7.5	7.4	7.3	7.4	7.4	7.2	7.3	7.5	7.4	7.3	7.5	7.4
Total Dissolved Solids,(mg/l)	268	262	265	260	264	258	260	268	270	275	268	274
Hardness(Total) as CaCO ₃ ,(mg/l)	235	230	230	230	235	230	235	240	242	235	245	240
Chlorides as CaCO ₃ , (mg/l)	14	12	15	12	12	10	10	14	15	12	14	12
Sulphate as SO ₄ , (mg/l)	12	12	14	12	10	10	12	14	12	14	12	10
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

Parameter	Octobe	r 2019	Novemb	er 2019	Decemb	December 2019		er 2019 January 2020		February 2020		March 2020	
Date of Sampling	05.10.19	29.10.19	04.11.19	28.11.19	02.12.19	30.12.19	03.01.20	28.01.20	02.02.20	28.02.20	04.03.20	30.03.20	
рН	7.3	7.4	7.5	7.3	7.4	7.5	7.3	7.4	7.3	7.5	7.4	7.3	
Total Dissolved Solids,(mg/l)	270	265	264	270	265	260	270	262	268	260	265	270	
Hardness(Total) as CaCO ₃ ,(mg/l)	260	265	270	264	268	260	270	265	268	260	264	258	
Chlorides as CaCO ₃ , (mg/l)	10	12	14	10	12	10	12	10	14	10	12	10	
Sulphate as SO ₄ , (mg/l)	14	12	11	14	12	14	14	12	15	12	10	8	
Mercury (mg/l)	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	

<u> Table-7.6(1) (Contd...)</u>

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit. At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(2)</u>
THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED AT HORTICULTURE NURSERY

Parameter	April 2019		May 2019		June 2019		July 2019		August 2019		September 2019	
Date of Sampling	02.04.19	26.04.19	04.05.19	28.05.19	02.06.19	28.06.19	01.07.19	29.07.19	02.08.19	30.08.19	04.09.19	28.09.19
рН	7.4	7.3	7.4	7.5	7.4	7.3	7.4	7.3	7.5	7.4	7.5	7.3
Total Dissolved Solids,(mg/l)	264	270	260	268	262	265	260	268	270	276	265	272
Hardness(Total) as CaCO ₃ ,(mg/l)	235	235	230	235	230	235	230	235	240	245	238	240
Chlorides as CaCO ₃ , (mg/l)	10	14	12	14	12	14	10	12	14	12	10	14
Sulphate as SO ₄ , (mg/l)	12	16	15	16	12	14	12	15	12	14	12	10
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit. At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO ₄ , mg/l	:	400

<u>Table-7.6(2)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED AT HORTICULTURE NURSERY</u>

Parameter	Octobe	er 2019	November 2019		December 2019		January 2020		February 2020		March 2020	
Date of Sampling	05.10.19	29.10.19	04.11.19	28.11.19	02.12.19	30.12.19	03.01.20	28.01.20	02.02.20	28.02.20	04.03.20	30.03.20
рН	7.4	7.5	7.3	7.6	7.5	7.4	7.5	7.3	7.4	7.5	7.3	7.4
Total Dissolved Solids,(mg/l)	278	260	275	268	272	278	270	260	265	272	262	258
Hardness(Total) as CaCO ₃ ,(mg/l)	245	230	240	238	245	250	240	235	240	242	235	232
Chlorides as CaCO ₃ , (mg/l)	12	10	16	10	12	14	12	10	12	15	12	10
Sulphate as SO ₄ , (mg/l)	14	12	15	12	100	12	15	10	10	12	10	08
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(3)</u>
<u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR NFL BOUNDARY</u>

Parameter	April 2019		May 2019		June 2019		July 2019		August 2019		September 2019	
Date of Sampling	02.04.19	26.04.19	04.05.19	28.05.19	02.06.19	28.06.19	01.07.19	29.07.19	02.08.19	30.08.19	04.09.19	28.09.19
рН	7.6	7.5	7.4	7.6	7.5	7.4	7.7	7.5	7.6	7.3	7.4	7.5
Total Dissolved Solids,(mg/l)	270	278	272	280	270	278	274	282	280	265	280	286
Hardness(Total) as CaCO ₃ , (mg/l)	240	245	240	245	235	240	242	245	245	250	245	250
Chlorides as CaCO ₃ , (mg/l)	12	15	14	18	15	16	14	18	16	18	16	16
Sulphate as SO ₄ , (mg/l)	14	16	15	16	12	14	12	16	14	16	12	14
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO ₄ , mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(3)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR NFL BOUNDARY</u>

Parameter	C October 2019		November 2019		December 2019		January 2020		February 2020		March 2020	
Date of Sampling	05.10.19	29.10.19	04.11.18	28.11.19	02.12.19	30.12.19	03.01.20	28.01.20	02.02.20	28.02.20	04.03.20	30.03.20
рН	7.6	7.4	7.5	7.6	7.5	7.7	7.4	7.6	7.5	7.7	7.6	7.4
Total Dissolved Solids,(mg/l)	282	275	280	270	275	282	270	285	280	268	275	282
Hardness(Total) as CaCO ₃ , (mg/l)	245	240	242	235	240	245	240	250	245	235	250	252
Chlorides as CaCO ₃ , (mg/l)	18	15	18	14	16	18	14	18	16	14	12	16
Sulphate as SO ₄ , (mg/l)	12	14	16	12	14	16	12	14	15	12	10	12
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(4)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED OPPOSITE STORES</u>

Parameter	rameter April 2019		May 2019		June 2019		July 2019		August 2019		September 2019	
Date of Sampling	02.04.19	26.04.19	04.05.19	28.05.19	02.06.19	26.06.19	01.07.19	29.07.19	02.08.19	30.08.19	04.09.19	28.09.19
рН	7.6	7.5	7.4	7.6	7.6	7.4	7.5	7.6	7.5	7.4	7.4	7.6
Total Dissolved Solids, (mg/l)	260	272	265	278	272	264	275	270	278	282	280	275
Hardness (Total) as CaCO ₃ , (mg/l)	225	230	235	240	244	240	245	235	240	245	244	250
Chlorides as CaCO ₃ , (mg/l)	14	6	12	15	16	14	12	18	16	14	14	18
Sulphate as SO ₄ , (mg/l)	15	18	14	16	12	10	14	12	14	16	12	14
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO ₄ , mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(4)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED OPPOSITE STORES</u>

Parameter	Octobe	er 2019	November 2019		Decemb	er 2019	Januar	ry 2020	Februa	ry 2020	March	n 2020
Date of Sampling	05.10.19	29.10.19	04.11.19	28.11.19	24.12.19	30.12.19	03.01.20	28.01.20	02.02.20	28.02.20	04.03.20	30.03.20
рН	7.5	7.4	7.6	7.5	7.7	7.4	7.6	7.5	7.4	7.6	7.8	7.5
Total Dissolved Solids, (mg/l)	276	286	280	272	282	265	270	278	274	280	260	276
Hardness (Total) as CaCO ₃ , (mg/l)	240	245	246	240	250	235	240	245	246	250	235	240
Chlorides as CaCO ₃ , (mg/l)	15	16	18	14	15	12	14	18	12	15	12	16
Sulphate as SO ₄ , (mg/l)	12	14	12	10	14	10	12	14	10	12	10	14
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO ₄ , mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(5)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR RAW WATER STORAGE TANK</u>

Parameter	April 2019		May	2019	June	2019	July	2019	Augus	t 2019	Septem	oer 2019
Date of Sampling	02.04.19	26.04.19	04.05.19	28.05.19	02.06.19	28.06.19	01.07.19	29.07.19	02.08.19	30.08.19	04.09.19	28.09.19
рН	7.5	7.6	7.3	7.4	7.5	7.4	7.3	7.5	7.4	7.5	7.3	7.4
Total Dissolved Solids, (mg/l)	278	274	265	275	272	268	274	270	268	278	272	280
Hardness (Total) as CaCO ₃ , (mg/l)	240	245	235	240	240	235	240	235	240	242	240	245
Chlorides as CaCO ₃ , (mg/l)	16	10	12	14	15	14	16	12	14	16	12	15
Sulphate as SO ₄ , (mg/l)	14	12	14	16	12	10	10	12	12	14	15	12
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(5)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR RAW WATER STORAGE TANK</u>

Parameter	October 2019		November 2019 December 2019		er 2019	January 2020		February 2020		March 2020		
Date of Sampling	05.10.19	29.10.19	04.11.19	28.11.19	02.12.19	30.12.19	03.01.20	28.01.20	02.02.20	28.02.20	04.03.20	30.03.20
pН	7.6	7.5	7.3	7.4	7.5	7.6	7.4	7.5	7.6	7.4	7.6	7.5
Total Dissolved Solids, (mg/l)	270	282	265	274	280	265	276	268	275	282	278	268
Hardness (Total) as CaCO ₃ , (mg/l)	240	245	235	240	240	235	240	240	248	250	235	240
Chlorides as CaCO ₃ , (mg/l)	12	16	15	12	18	12	16	14	15	18	16	12
Sulphate as SO ₄ , (mg/l)	10	14	10	14	16	10	14	10	12	14	12	10
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO4, mg/l	:	400
Mercury, mg/l	:	No Relaxation

7.6 POLLUTION CONTROL AND TESTING LABORATORY IN PACL

A well-equipped laboratory with qualified and trained manpower and also with modern analytical instruments is in round the clock functioning in PACL. A list of instruments and other lab equipments available if PACL lab is given below in table no. 7.7(1).

Table - 7.7(1)

LIST OF INSTRUMENTS IN POLLUTION CONTROL LABORATORY

SI. No.	Name of Equipment / Instrument	Quantity (Nos.)
1.	pH meter/ Conductivity meter(Hach)	1
2.	Spectrophotometer(Hach DR3900 & DR6000)	2
3.	Fractional Weights (set)	1
4.	Mettler Balance(ME204)	1
5.	Mettler Balance(B205-S)	1
6.	Mettler Balance (ML204)	1
7.	Gas Chromatograph (AIMIL)	2
8.	Gas Chromatograph (NUCON)	1
9.	Metrohm Coulometer (Metrohm)	1
10.	Melting point apparatus	1
11.	Flash Point Apparatus	1
12.	Electric oven (New ACMAS)	2
13.	Muffle furnace(New)	1
14.	Bomb Calorimeter (Tosniwal)	2
15.	Sound Level Meter	1
16.	Oxygen Analyser Nucon 101-H	1
17.	High volume sampler (Polltech)	3
18.	Handy Sampler KIMOTO/POLLTECH	2
19.	Flue gas Analyser (KM/Endee)	2
20.	Dew point apparatus	2
21.	Magnetic Stirrers(Remi)	2
22.	Flue gas sampler	2
23.	Stack Monitoring Kit	1
24.	Explosive Metter	3
25.	Water Bath (ASV Analytical)	1
26.	Digital ultrasonic Cleaner	1
27.	Bulk Density Apparatus (ASV Analytical)	1
28.	Turbidity Meter (QC-01219)	1
29.	Vacuum Pump	1
30.	ICP-OES (Prekin)	1
31.	Gas Analyzer (101H) Newcon	1

7.8 NOISE LEVEL MONITORING INSIDE THE PLANT

Noise level monitoring is carried out on monthly schedule at various plant locations to check and control noise pollution. Observations are recorded. Average noise levels measured at five locations of plant boundaries are given below.

Sl.No	Location	Noise Level dB(A)
1	Near Gate No-1 (North West)	60.0
2	Near Gate No-2 (West direction)	62.0
3	North West Boundary	62.0
4	Railway Siding (eastern boundary)	62.0
5	South Side corner	62.0

At all the location noise found with in the prescribed limit.

CHAPTER-8

ENERGY CONSUMPTION FOR POLLUTION CONTROL

8.1 ENERGY CONSUMPTION FOR POLLUTION CONTROL

Energy consumption for running liquid and air pollution control equipments and for solid waste handling in both units are monitored and records are maintained on daily and monthly basis. Consumption reports are sent to PPCB on monthly basis.

The energy consumption for water and air pollution control equipment and for solid waste handling for Unit-I and Unit-II are given in Table-8.1.1

Table - 8.1.1

ENERGY CONSUMPTION FOR POLLUTION CONTROL FOR THE PERIOD APRIL 2019 TO MARCH 2020 (IN KWH UNIT)

MONTH	Solid Waste Pollution Control Equipments			Liquid Effluents Pollution Control Equipments			Air Pollution Control Equipments		
	U - 1	U - 2	TOTAL	U - 1	U - 2	TOTAL	U - 1	U - 2	TOTAL
April 19	3240	8300	11540	312	5870	6182	15867	35600	51467
May 19	5352	8420	13772	150	6030	6180	16890	36800	53690
June 19	4944	8480	13424	240	6110	6350	16524	38000	54524
July 19	5880	9000	14880	156	6180	6336	17709	38800	56509
August 19	5496	8800	14296	102	6084	6186	19860	37000	56860
September 19	5004	9050	14054	72	6110	6182	18594	37600	56194
October 19	5364	9150	14514	36	6120	6156	18709	38200	56909
November 19	5544	9250	14794	372	6090	6462	19169	37600	56769
December 19	5904	9350	15254	492	6106	6598	21042	37800	58842
January 20	3480	9400	12880	408	6110	6518	21338	37600	58938
February 20	3960	9370	13330	342	6096	6438	19808	37560	57368
March 20	1272	9450	10722	114	6114	6228	18434	38000	56434
Total	55440	108020	163460	2796	73020	75816	223944	450560	674504
Average	4620	9001.67	13621.7	233	6085	6318	18662	37546.7	56208.7

CHAPTER-9

BY-PRODUCT RECOVERY

- 9.1 Hydrochloric Acid, Sodium Hypo Chlorite and Spent H₂SO4 are established byproducts in a chlor-alkali plant, caustic soda being the principal product.
- 9.2 Sulphuric Acid is used for drying Chlorine .The dilute spent H2SO4 generated from the plant is sold as a by-product.

CHAPTER-10

AFFORESTATION

10.1 GENERAL

A. FACTORY

Ecological degradation has assumed alarming proportions as the rapid pace of environmental destruction through deforestation and pollution etc. is affecting the lives of millions of people all over the country.

PACL being environmentally conscious have been taking all precautionary measures right from the design stage for the prevention of water and environmental pollution due to the effluent and wasteful products from their factory and are contributing their mite to combat this problem by planting trees on a massive scale in and around Naya Nangal.

10.2 The management of M/s PACL is alive to the necessity of the conservation of natural resources. In its continued efforts, PACL has planted the following trees and shrubs in its drive for afforestation.

Sl. No.	Variety	No. of Trees
(I) .	TREES	
01	Kachnar	06
02	Cassia Semmia	25
03	Silver Oak	290
04	Bottle Brush	30
05	Gulmohar	09
06	Legerstiomia	30
07	Acassia Auricali Formos	87
08	Kanak Champa	245
09	Amaltas	29
10	Bottle Palm	30
11	Saroo	07
12	Ashoka Pondula	361
13	Arjun	65
14	Gulmohar, Silver Oak, Eucalyptus, Jakranda Arithina, Causoriva, Kanak Champa (Mixed in Nursery)	
15	Eucalyptus, Process Water Tank area in unit- 2 and fire wood Jantar Mantra	600
16	Eucalyptus (South, West & East of Unit-1), Phlsa, Shabool & fire Wood mixed Jantar Mantar.	950

POSITION OF PLANTATION IN PACL FACTORY / COLONY

17	Palm	195
18	Casorina	
19	Molsari	170
20	Cheel	04
21	Rubber Plant	12
22	Lstonia	51
23	Shetoot	25
24	Aerucaria	10
25	Koral tree	06
26	Chakrassia	15
27	Dek	525
28	Chandni	60
29	Cassia Gulaca	72
30	Neem	15
31	Palmeria Champa	18
32	Fruit Trees (Mango, Guava & Jamun)	50
33	Fycus	28
34	Pattranjeeva	65
35	Sukhchain	80
36	Bamboo Tree	1300
	Total	5465
(II)	SHURBS – All Mixed	
	Bougenvillia, Chandni, Rat-Ki-Rani,	
01	Gulmohar, Hivigenx, Muraia, Molsari,	382
	Rubber Plant (All Mixed), Poinsetta	

B. Housing Colonies

DETAILS REGARDING TREE PLANTATION

(I)	In Old Housing Colo	ny		In New Housing Colony		
Sl. No.	A. Type/Variety of Tree	No. of Trees	Sl. No.	A. Type/Variety of Tree	No. of Trees	
1.	Chakrassia	13	1.	Chakrassia	04	
2.	Amaltas	NIL	2.	Amaltas	NIL	
3.	Ashoka Pandula	37	3.	Ashoka Pandula	110	
4.	Well come tree	02	4.	Well come tree	08	
5.	Rubber Plant & Fruit tree	31	5.	Rubber Plant & Fruit tree	123	
6.	Arucaria	04	6.	Arucaria	02	
7.	Kanak Champa	02	7.	Kanak Champa	-	
8.	Sehtoot	06	8.	Sehtoot	05	
9.	Neem	02	9.	Gulmohar	02	
10.	Tun	01	10.	Tun	03	
11.	Chandni	05	11.	Koral tree	20	
12.	Palmeria Charrpa	02	12.	Popular	01	
13.	Silver Oak	01	13.	Silver Oak	71	

14.	Pinkessia	02	14.	Pinkessia	11
15.	Dek	01	15.	Dek	20
16.	Legerstormia Speciosa	01	16.	Legerstormia Speciosa	02
	Total B. Shrubs/All Mixed	110			382
(II)	Old and New Colony	No. of Trees			
	Lajstonia, More Pankh, Chandni, Pulmeria Champa, Hivi Seux, Laltena Yellow, Kaner (Near out of Boundary wall), Cassia Gulaca, Bottle Palm, Bougenvillia, Amla,	145			
	Total	145			

POLLUTION CONTROL