PRIMO CHEMICALS LTD

FORMERLY KNOWN AS

PUNJAB ALKALIES AND CHEMICALS LTD.

NANGAL-UNA ROAD, NAYA NANGAL. PUNJAB

ENVIRONMENTAL AUDIT & ENVIRONMENTAL STATEMENT FOR THE YEAR 2022-2023

MEL/PCL/ES 2023/ 01

September, 2023

PREPARED BY

MANTEC CONSULTANTS PVT. LTD.

805, VISHAL BHAWAN, 95 NEHRU PLACE, NEW DELHI – 110 019 PH. (011) 26429294/5/6, FAX: (011) 26842531 E-mail: envmantec@yahoo.co.in www.mantecconsultants.com

FORM-V

(See Rule 14)

Environmental Audit & Environmental Statement for the financial year ending the 31st March 2023

PART-A

1.	Name and address of the owner /	:	Sh. Naveen Chopra			
	occupier of the industrial operation		Managing Director			
	or process		M/s Primo Chemicals Ltd. formerly			
			known as Punjab Alkalies and Chemicals			
			Ltd.			
			Naya Nangal,			
			District – Ropar			
			Punjab			
2.	Industry Category	:	Large			
	Primary-(STC Code)					
	Secondary (SIC Code)		2812			
3.	Production Capacity	:				
	Unit – I		70 TPD Caustic Soda			
	Unit - II		370 TPD Caustic Soda			
4.	Year of Establishment	:	Plant commissioned in 1984			
5.	Date of the last Environmental	:	September, 2022			
	Statement submitted					

PART-B

WATER AND RAW MATERIAL CONSUMPTION

(i) Water Consumption (m³/year)

Process	: 252408	
Cooling	: 238239	
Domestic	: 16425	
Name of Products	Process water cor	sumption per unit
	Of product outpu	t
	During the Previous	During the Current
	Financial Year	Financial Year
	(2021-2022)	(2022-2023)
	1	2

(i) FOR CAUSTIC SODA LYE 4.371 M³/MT 3.738 M³/MT

(ii) Raw Material Consumption

*Name of Raw Materials	Name of Products	s Consumption of Raw Material Per U of Output (MT/Year)		
		During the	During the	
		Previous Financial	Current Financial	
		Year (2021-2022)	Year (2022-2023)	
Salt	Caustic soda	1.59	1.59	
Soda Ash	Caustic soda	0.0044	0.0050	
Barium Carbonate	Caustic soda	0.0084	0.0086	
Hydrogen	Hydrochloric acid	0.0113	0.0113	
Chlorine	Hydrochloric acid	0.2656	0.2656	
Chorine Tailings	Sodium hypo chloride	0.0999	0.0999	
For Caustic Soda Lye	Caustic Soda	0.0082	0.0082	

* Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

PART-C

Pollution Discharged to Environment/unit of Output (PARAMETER AS SPECIFIED IN THE CONSENT GRANTED)

UNIT-I

Pollutants		Quantity of Pollutants Discharged (mass/day)	Concentration of Pollutants in Discharges (mass/volume)	Prescribed Standards	Percentage of Variation from Prescribed Standards with Reason
(a)	Water	Zero Discharge			
	рН	-	-	5-9	-
	Total Suspended Solids	-	-	100 mg/l	-
(b)	Air				
	Hypo stack Chlorine	0.000797 kg/day	8.59 mg/Nm ³	15 mg/Nm ³	(-)42.7
	HCl vent, HCl content	0.00223 kg/day	11.15 mg/Nm ³	35 mg/Nm ³	(-)68.1

PART-C (CONTD.)

Pollution Discharged to Environment/unit of Output (PARAMETER AS SPECIFIED IN THE CONSENT GRANTED)

UNIT-2

Pollutants		Quantity of Pollutants Discharged (mass/day)	Concentration of Pollutants in Discharges (mass/volume)	Prescribed Standards	Percentage of Variation from Prescribed Standards with Reason
(a)	Water	Zero Discharge			
	pН	-	7.51	5-9	Within limits
	Total Suspended Solids	3.32 kg/day	25.67 mg/l	100 mg/l	(-)74.33
(b)	Air				
	Hypo stack Chlorine	0.000865 kg/day	9.75 mg/Nm ³	15 mg/Nm ³	(-)37.8
	HCl vent, HCl content	0.000857 kg/day	10.07 mg/Nm ³	35 mg/Nm ³	(-)73.6

-ve indicates % variation w.r.t standards (within limits)

PART-D

HAZARDOUS WASTES

(As specified under Hazardous Wastes (Management and Handling) Rules, 2000)

Hazardous Wastes	Total Quantity Generated (MT)			
(During the Previous Financial Year 2021-2022)	During the Current Financial Year (2022-2023)		
(a) From process				
(i) Used/Spent Oil(Category 5.1)(ii) Spent Acid/Sulphuric Acid) NIL	NIL		
(Category17.2)	2200.094 MT	2686.160 MT		
(iii) Bio Medical Waste	7.915 Kg	20.770 Kg		
(iv) MEE Sludge(Category 35.3)	84.236	108.601 MT		
(b) From pollution control facilities	3 NIL	NIL		

PART-E

SOLID WASTES (NON HAZARDOUS)

	Total Quantity (ON DRY BASIS MT)			
	During the previous financial year (2021-2022)	During the Current financial year (2022-2023)		
(a) From process	2313.557	2735.874		
(b) From pollution control facilities (from tanks/vessels)	Nil	Nil		
(c) (1) quantity recycled or re- utilized within the unit(2) Sold Disposed	Nil	Nil		

PART-F

CHARACTERISTICS OF SOLID WASTES (BRINE SLUDGE)

S1. No.	Parameter	Unit	Membrane Cell, Unit-I	Membrane Cell, Unit-II
1.	Loss on Drying (Water)	%	-	36.70
2.	NaCl	%	-	6.90
3.	Calcium as CaCO3	%	-	10.60
4.	Magnesium as Mg(OH)2	%	-	9.20
5.	Acid insoluble	%	-	36.60

QUANTITY OF SOLID WASTE (BRINE SLUDGE) ON DRY BASIS

Solid waste	Unit-I	Unit-I Unit-II	
Brine Sludge from Drum Filter /Decanter(MT)	0.000	1784.812	1784.812
Brine Sludge from Brine sludge Pits, MT	0.000	650.396	650.396
Precipitation Tanks / Vessels, MT	0.000	150.333	150.333
Sludge from salt saturator MT	0.000	150.333	150.333
Total Solid waste Generated, MT	0.000	2735.874	2735.874

PART-G

M/s Primo Chemicals Ltd. formerly known as Punjab Alkalies and Chemicals Ltd., Naya Nangal, has taken pollution control measures since commissioning of the plant. Though several pollution control measures have been taken by them, still efforts are on to preserve natural resources. In the manufacturing process of sodium hydroxide, chlorine gas is also produced Chlorine gas and Hydrogen as product. A major portion of the gas is processed and liquefied to liquid chlorine for sale. The other major portion is utilized in the production of hydrochloric acid. The tail chlorine gas from all the sections of plant such as chlorine liquefaction, chlorine storage, chlorine filling etc. are neutralized in the caustic soda solution resulting in the formation of sodium hypochlorite liquor.

Automatic chlorine detectors have been installed around the industry to check any chlorine leakage.

The management of industry is alive to necessity of the conservation of natural resources. In the continued efforts, the industry has planted many trees and shrubs in its drive for afforestation.

PART-H

The management of industry is quite conscious of the issues of environmental protection. Number of measures has been taken by the industry to protect the environment as detailed below:-

- 1. The waste HCl generated during regenerating of ION Exchange Column going to the ETP, which is neutralized with caustic soda solution for pH adjustment. Now the above waste acid is being collected in storage tank and reused in the ETP for pH adjustment. This has been adopted in both units.
- 2. The brine drained during sample collection at various points was earlier passing to the ETP increasing the chloride and TDS content. The same has now been recirculated and reused in the system.
- 3. In the precipitated tank area the pump gland leakages was also passing to the ETP. The same is stopped totally and this also has reduced the TDS load in the ETP.
- 4. Continuous recording of effluent discharged with graphs in Control Room.
- 5. Tanker inspection platform provided.
- 6. Company is certified under ISO 9001:2015, ISO 14001: 2015, ISO 22000:2018 and ISO 50001:2018.
- 7. System for pre-treatment of chlorine section effluent is installed and the same is taken to ETP for further treatment.
- 8. Three new high volume samplers and one handy sampler are procured replacing the old ones.
- 9. Periodic measurement and monitoring of sound level at various locations inside the Plant has been implemented to control sound pollution.
- 10. The additional sod. Hypo tower installed in sod .hypo plant to scrub all the waste chlorine gas in complete soda so for capacity of the sod. Hypo plant U-2 is increased.
- 11. A green belt has been developed in side the plant premises.
- 12. All the solid sludge (Brine sludge) is stored in side the plant premises.
- 13. Proper storage facilities provided to store used lubricating oil as transformer oil (hazardous waste)
- 14. The mercury bearing brine sludge generated from 1984-1998 with mercury cells stored in side the plant premises in impervious brine sludge Pit No.1 . The sludge samples @ different depths were got tested twice in the past from NABL lab to check Mercury if any. It was not detected and accordingly the industry as retain to PPCB for declaring mercury bearing brine sludge as non-hazardous as the same has become inert over a period of about 24 years.

PART- I

(Any other particulars for improving the quality of the environment.)

Detailed Report Enclosed

EXECUTIVE SUMMARY

- For preparation of Environmental Statement (Environmental Audit) for the assessment year 2022-2023, M/s Primo Chemicals Ltd. formerly known as Punjab Alkalies and Chemicals Ltd., Nangal-Una Road, Naya Nangal, Punjab retained M/s. Mantec Consultants Pvt. Ltd., New Delhi.
- M/s. Primo Chemicals Ltd. formerly known as Punjab Alkalies and Chemicals Ltd. are manufacturing Caustic Soda Lye as the principal product, Chlorine and Hydrogen as co-products and Hydrochloric Acid, Sodium Hypochlorite and Spent Sulphuric Acid as by-products.
- Detailed manufacturing process for the production of principal and by products has been described in this Environmental Statement. Different manufacturing units have been dealt with individually, giving chemical reactions of various processes.
- A statement of quality and quantities of raw material, consumed vis-a-vis products and by-products manufactured has been projected.
- Material balancing of raw material utilized and products & by-products manufactured has been carried out and mentioned in the report. Tables clearly giving the inputs & outputs have been presented. Such balancing indicates that negligible quantities of raw material, products and by-products are coming out in the form of waste. On the whole, the materials are getting balanced comprehensively.
- The quality and quantity of pollution generated in the form of liquid, solid and gaseous emissions have been assessed. Their method of treatment and disposal has been described as pollution control measures.

It has been observed that the air emissions coming out of the treatment facilities conform to the prescribed standards. Satisfactory measures have been adopted for the storage of sludge generated from the process and treatment facilities.

- Impacts of such pollution control measures have been assessed and described. The study reveals that with such measures there are no negative impacts on different environmental media viz. Ground water, surface water, soil, atmosphere, flora & fauna. There are no cultural site/ ancient monuments, etc in the vicinity of the industry.
- Energy consumption for air and water pollution control equipment for the year 2022-2023 has been detailed.
- The industry has well take care the area of development of vegetation. The management has planted about 8140 trees/shrubs.
- The management of the industry being conscious of environmental protection has taken several steps in this direction and has made several significant achievements.
- Overall, the industry is doing well for conserving the environment and has taken the appropriate steps for controlling the pollution levels.

PREAMBLE

2.1 GENERAL

In pursuance of the Gazette Notification No. 155.GSR383 (E) dated 28th April, 1993 by Govt. of India, Department of Environment, Ministry of Environment & Forests (MoEF), M/s Primo Chemicals Ltd. formerly known as Punjab Alkalies & Chemicals Ltd. (PACL), Naya Nangal, appointed M/s. Mantec Consultants Pvt. Ltd., New Delhi for carrying out Environmental Audit (Presently called Environmental Statement), under the provision of Law. This report has been prepared on the basis of data / information furnished by the industry.

2.2 BRIEF COMPANY PROFILE

M/s. Primo Chemicals Ltd. formerly known as Punjab Alkalies and Chemicals Ltd. (PACL), Naya Nangal, is a Chlor-alkali unit, manufacturing Sodium Hydroxide (Caustic Soda) from Sodium Chloride (Brine) by electrolytic process, generating the attendant by- products viz., chlorine hydrogen, hydrochloric acid and bleach liquor (sodium hypochlorite).

The plant was commissioned in January 1984 at a cost of Rs 35 crores, with technical collaboration from Uhde-Gmbh, Germany with a production capacity of 33,000 TPA of Caustic Soda. Due to the enhanced market potential, PACL augmented caustic soda production capacity from 33,000 TPA to 40,730 TPA in 1989-90 and subsequently it was further increased to 73,750 TPA in the year 1995-96 by installing 100 TPD membrane cell plant. The mercury cell plant converted to 200 TPD membrane cell plant from 170 TPD mercury cell plant in the year 1998 and total capacity increases to 99,000 TPA. The present production capacity of the plant is approximately 1,65,000 TPA.

The management being conscious for the welfare of its employees has provided facilities of a canteen, rest room, personal protective equipment etc. By way of perks, canteen allowance, liveries and washing allowances have been granted to the entitled employees.

2.3 LOCATION

The Primo Chemicals Ltd. formerly known as Punjab Alkalies & Chemicals Ltd., Naya Nangal complex is located west of Sutlej River, 1 km from Nangal-Una State Highway No. 22. It is 16 km from Bhakra Dam, on a sprawling plot area of approximately 32.6174 hectares (80.6 acres), with corporate office at Chandigarh.

CHAPTER - 3 MANUFACTURING PROCESS

3.1 GENERAL

The basic ingredients for the manufacture of main products (Caustic soda, chlorine & hydrogen) and by-products (hydrochloric acid, sodium hypo-chlorite is sodium chloride (common salt) and water.

Detailed manufacturing processes of products and by-products are as follows:-

3.2 MANUFACTURING PROCESS BY MEMBARANE CELL TECHNOLOGY

3.2.1 Salt Handling & Brine Treatment

For the manufacture of sodium hydroxide, principal raw material is industrial grade sodium chloride. This salt of approximately 97% purity, procured mainly from Gujarat is transported to the plant by railway wagons & trucks. The salt unloaded inside the factory is manually transferred to the salt yard from where it is fed to the saturators through bucket elevators. The saturated brine of about 310 gm/liter concentration flows to the precipitation tank, where the impurities of calcium, magnesium, sulphates, iron and other insoluble contents are removed by treating it with chemicals like soda ash, caustic soda, barium carbonate and flocal. The treated brine flows to the clarifier where the impurities are allowed to settle and removed as sludge.

3.2.2 Brine Clarification

From the precipitation tank, the brine overflows to the central inlet of the clarifier. Here, a definite quantity of flocculent solution is mixed with the brine. In the clarifier, the major portions of solids are removed from the brine and are discharged from the underflow to the vacuum drum filter. From the clarified brine tank, it is pumped to the anthracite filters.

3.2.3 Brine Filtration and Polishing

To remove any residual solid impurities, the clarifier brine is filtered through two stage of filtration: First Stage of Filtration : Anthracite Filters Second Stage of filtration : Polishing Filters

Polished brine is collected in a polished brine tank and is pumped through a recuperator in order to heat the brine to 65° C (approximately).

3.2.4 Secondary Brine Purification

From the brine recuperator, the polished brine is sent to the secondary purification section. This section serves to remove the calcium and magnesium cations still contained in the brine to the residual content of less than 30ppb. The brine is purified in two ion exchange columns connected in series. The pure brine passes to the brine head tank via brine heat exchangers which serve to heat brine during the start up and also serve to cool brine during shut down.

3.2.5 Electrolyser Section

Pure brine of 310 ± 10 gm per liter NaCl is fed to anodic side of electrolyser. Membrane, which is partition between anodic and cathodic cells, selectively allows only Na ions and does not allow OH and Cl ions to pass through. Also 3-4 moles of H2O per mole of Na+ ions penetrate through membrane towards cathodic side (cathode is of Nickel and anode is of Titanium construction). Cl evolves at anodic side and H₂ evolves on cathodic side. Anolyte coming out of the cells is of 200-220 gm/liter i.e. depletion is 90-110 gm/liter of NaCl. A portion of the catholyte is pumped to caustic concentration unit for further concentration of the product to 47.5% from $32\pm 2\%$. Anolyte from cells is passed to anolyte tank, which after dechlorination and pH adjustments, termed as lean brine, is pumped to the brine saturators.

3.2.6 Chlorate Destruction

To a purge stream of anolyte, HCl is added and heat is applied through steam. This causes the chlorate to break up to give chlorine, which is sent to the chlorine system. The acidified anolyte free from chlorate is sent back to the anolyte steam.

3.2.7 Catholyte and Hydrogen

Catholyte and H₂ mixture from catholyte side of electrolysers are sent to the catholyte tank from where 32-33 % caustic is pumped to the storage tanks and a part of it is pumped back to the electrolyser through a cooler after adding DM water to it. Hydrogen is separated in a catholyte header itself and is sent for processing. H₂ is cooled in a heat exchanger to about 45^o C and is sent to demister through a safety vessel and is finally transferred to HCl synthesis unit and to other destinations like boiler, flakers and bottling units.

3.2.8 Hydrogen Handling

Hydrogen gas is separated from catholyte and is pumped from gasholder to (i) HCl plant for making hydrochloric acid, (ii) to fusion plant for the use as a fuel (iii) a neighboring hydrogen bottling plant and (iv) to the boiler.

3.2.9 Chlorine Handling and Filling

Chlorine liberated in the anode compartment of the electrolyser is saturated with anolyte and the same after separation is treated in the chlorine section of the plant. In this section the gas is cooled, dried with sulphuric acid and compressed to a pressure of 3.2 Kg/ cm². The compressed gas is liquefied in the liquefier using freon 22 as refrigerant. The liquid chlorine flows to one of the four insulated MS storage bullets. From the bullets, tonners are filled with 900 Kg. Chlorine, inspected and tested before dispatch.

3.2.10 Hydrochloric Acid Unit

A portion of chlorine gas after Cl2 compressors is diverted to HCl plant and is burnt with hydrogen gas in a furnace to form hydrochloric acid following the reaction given below:

 $H_2 + Cl_2 \longrightarrow 2HCl$

The HCl vapours are absorbed in water to form 30-33% HCl. The residual unabsorbed HCl gas coming out of the primary absorber is now absorbed in water in the tail gas absorber forming weak acid which flows to primary absorber to form concentrated acid. HCl is stored in three FRP/MS rubber lined tanks.

3.2.11 Sodium Hypochlorite Production

In this section of the plant, fugitive chlorine gases from all sources are taken for neutralization with caustic soda to form sodium hypochlorite bleach liquor so that the chlorine emission to the environment is eliminated. This not only minimizes the emissions of dangerous chlorine to the atmosphere but also adds to revenue generation. The process involves the following reactions:

Sodium hypochlorite (NaOCl)

2NaOH + Cl2 → NaOCl + NaCl + H2O

PRODUCTION IN THE YEAR OF 2022-2023

4.1 **PRODUCTS**

List of products manufactured by Primo Chemicals Ltd. formerly known as PACL with quantities as reported by the management, are given below in Table - 4.1

<u>Table - 4.1</u>

S. No.	Name of the Product	Units	Production in the year 2022-23
1.	Caustic Soda Lye Gross (Net Production)	MT	134977.397/ (125739.181)
2	Liquid Chlorine	MT	109482.303
4	Hydrochloric Acid	MT	55942.869
5	Hydrogen Gas	Nm ³	37793671.900
6	Sodium Hypochlorite	MT	20685.270

PRODUCTION DETAILS

MATERIAL BALANCE

5.1 SODIUM HYDROXIDE UNIT

5.1.1 Input / Output Statement for the Year 2022-2023

	Annual		Annual Output			
S1. No.	Input	Unit	Quantity	Output	Unit	Quantity
i.	Salt	MT	214614.061	NaOH	MT	134977.397507
ii.	Soda Ash	MT	675.960	Cl ₂ (gas)	MT	119589.971
iii.	Barium Carbonate	MT	1167.220	H ₂	Nm3	37793671.90
iv.	Flocculants	KGS	3645.500	Liquid Chlorine	MT	109482.303
v.	Water	KL	507072.00	Sodium Hypo	MT	20685.270
vi.				Hydrochloric Acid	MT	55942.869

5.1.2 Material Balancing for the Year 2022-2023

a. i.	Basis 2NaCl	+ 2H ₂ O	\rightarrow	2NaOH	+	Cl ₂	+	H_2
	116.91	+ 36.032	\rightarrow	80.016	+	70.91	+	2.016
ii.	Average Purity of crude NaCl = 95%							
iii.	Average	e cell efficiency	= 95%	% (Unit I-9	95%,1	Unit II-9	5%)	

b. Calculation

Pure NaCl available in crude salt 214614.061 x 0.95 per annum= 203883.358

Product	Calculation based on stoichiometric equation	Theoretical Production (MT)	Actual Production (MT)	Percentage Variation
NaOH	(203883.358 x 80.016 / 116.91) x 0.95	132565.513	112022.731	(-)18.338%
Cl ₂ (gas)	(203883.358 x 70.91/116.91) x 0.95	117479.261	102777.165	(-)14.305%
H_2	(203883.358 x 2.016 / 116.91) x 0.95	3339.982	3374.435	(+)1.021%

The variation in actual production is due to variation in current efficiency caused by deterioration in membrane conditions.

5.2 CHLORINE BALANCE

Generation	Quantity (MT)	Utilization	Quantity (MT)
Chlorine Gas Produced	119589.971	Production of Liquid Chlorine	109482.303
Chlorine Gas From Tonner Purging	4664.132.265	Chlorine Gas to HCl Plant	12703.273
		Chlorine Gas From Process Neutralized in Sod hypo Plants	2068.527
Total Chlorine Generated	124254.103	Total Chlorine Utilized	124254.103

5.2.1 Chlorine Utilization Statement for the Year 2022-2023

5.3 HYDROGEN BALANCE

5.3.1 Hydrogen Utilization Statement for the Year 2022-2023

Generation	Quantity(Nm ³)	Utilization (Nm ³)	Quantity(Nm ³)
H ₂ Gas Produced	37793671.9	H_2 in HCl Plant	7025248.0
		H ₂ Dispatched	3213831.0
		H ₂ for Boilers	21993784.0
		H ₂ Vent	5560808.9
Total	37793671.9	Total	37793671.9

5.4 HYDROCHLORIC ACID PLANT

5.4.1 Input Output Statement for the Year 2022-2023

Input	Quantity(MT)	Output	Quantity(MT)
Chlorine gas	12080.964	Hydrochloric acid	55942.869
Hydrogen gas	55942.869	Average Conc.	31.00%
Water (DM Water)	36033.725	HCl Content (100%)	15813.361

5.4.2 Material Balancing for the Year 2022-2023

a. Basic

i. H2	+	Cl ₂	\rightarrow	2HCl
2.016	+	70.91	\rightarrow	72.926

ii. Average concentration of product HCl = 31.00%

b. Calculation

 $(12703.273 \times 72.926 \times 100) / (31.00 \times 70.91) = 42143.329$

Theoretical Production (MT)	Actual Production (MT)	% age Variation	Remarks
42143.329	55942.869	(+) 24.667%	Concentration variation

5.4.3 Material Balancing for the Year 2022-2023

Chlorine utilized for Sodium Hypo Product	=	2068.527	MT
Quantity of sodium hypochlorite liquor produced	=	20685.270	MT
Chlorine input in Sodium Hypochlorite liquor	=	2068.527	MT

 $2 \text{ NaOH} + \text{Cl}_2 \rightarrow \text{NaOCl} + \text{NaCl} + \text{H}_2\text{O}$

5.5 SODIUM HYPOCHLORITE PLANTS

5.5.1 Input Output Statement for the Year 2022-2023

Input	Quantity(MT)	Output	Quantity(MT)	
Chlorine Gas for	2068 527	Sodium Hypo	20685.270	
Sodium Hypo	2000.527	Chlorite Liquor		
Caustic Soda for	2550.026	Available Chlorine	0.004.%	
Sodium Hypo MT	5550.926	(%)	9.994 /0	
Total Chlorine Input	2068.527	Total Chlorine Output	2068.527	

5.6 WATER BALANCE

5.6.1 Water Utilization Statement for the Year 2022-2023

Input	Quantity (m ³)	Output	Quantity (m^3)
Water drawn from RIVER SATLUJ	507072	Water Consumed for Process	252408
Water drawn from Primo Chemicals Ltd. Colony Bore well	316081	Domestic Water 3 Consumption Inside Plant	16425
		Domestic Water Consumption in Primo Chemicals Ltd. Housing Colony	316081
		Water Consumed for 2 Industrial Cooling	238239
Total Water Drawn	823153	Total Water Utilization	823153

POLLUTION GENERATION

6.1 INDUSTRIAL LIQUID EMISSIONS (WASTE WATER)

6.1.1 Raw Water

The main source of raw water for M/s Primo Chemicals Ltd. formerly known as PACL, Naya Nangal is River Satluj flowing across the Naya Nangal town. As given in Table 6.1 the total industrial water consumption of Primo Chemicals Ltd. for financial year 2022-2023 was 507072 m³ out of which 252408 m³ was used in the process, 238239 m³ was used for industrial cooling and 16425 m³ was used for industrial domestic purpose. Based on the data provided by PACL, the quality of process water is given at Table 6.1 Since there are substantial losses through evaporation in process of industrial cooling, the figure given above reflects only the make-up water. As on an average 42000 m³ per month of water drawn from Satluj River is used for industrial process, industrial cooling and industrial domestic purpose. Industrial cooling water from different units is recycled through cooling towers, the make-up water or evaporation losses work out to mere 3.5% of water recycled.

Table-6.1

Total water drawn in 2022 Total water used in 2022-2	2-2023 2023 for	507072 m ³
	Process	252408 m ³
	Industrial Cooling	238239 m ³
	Industrial Domestic	16425 m ³
		507072 m ³

Water Utilization Statement

Table – 6.2
Process Water Quality
(2022-2023)

Sl. No.	Parameter	Concentration Values		
		Min.	Max.	Avg.
1.	pH	7.1	7.7	7.4
2.	Total Hardness as CaCO ₃	92	112	104
3.	Chlorides as Cl	7.10	10.2	8.85

Note:- Except pH all values are in mg/1

6.1.2 Effluent Generation

Approximately 78.836m³/day of waste water is generated from process which is discharged after treatment.

6.1.3 Effluent Treatment

M/s Primo Chemicals Ltd. formerly known as PACL consumed 16425 m³ of water for industrial domestic purpose and 252408 m³ for process in 2022-2023. The characteristic of the process is given in Table-6.2. A part of this water is consumed and the remaining comes out as effluent. The month-wise characteristics showing minimum, maximum and average values of relevant parameters in process effluent are given at Table 6.3. These tables show that the characteristics of effluent after treatment are within the stipulated standards.

Table – 6.3

Month	рН	Total Suspended Solids (mg/l)	Total Residual Chlorine (mg/l)
April, 2022	7.5	25	Nil
May, 2022	7.5	24	Nil
June, 2022	7.5	18	Nil
July, 2022	7.4	24	Nil
August, 2022	7.2	22	Nil
September, 2022	7.1	20	Nil
October, 2022	7.1	21	Nil
November, 2022	7.1	21	Nil
December, 2022	7.2	21	Nil
January, 2023	7.2	21	Nil
February, 20223	6.5	18	Nil
March, 2023	7.2	20	Nil

Treated Effluent Quality (Per Month)

Table - 6.4

Treated Effluent Quality (2022-2023)

S1 .	Parameter	Concentration Values							
No.									
		Min.	Max.	Avg.					
1	pH	6.5	7.5	7.2					
2	Total Suspended solids	18	25	21					
3	Total Residual Chlorine	Nil	Nil	Nil					

Note:- Except pH all values are in mg/1

6.2 INDUSTRIAL GASEOUS EMISSIONS

6.2.1 Source of Gaseous Emission

Following are the source of gaseous emission from the industry.

- i. **HCl Plant:** In the hydrochloric acid plant, hydrogen and chlorine are burned to produce hydrochloric acid. During the process, there is a high probability of emission of vapors and mist of hydrochloric acid and unburned chlorine. To capture such emission, the secondary absorber has been provided. Residual chlorine in the tail gas is absorbed in water to make weak acid, which is fed to the primary absorber.
- ii. **Chlorine Gas:** In this plant unutilized gas from the process is fed to the waste air dechlorination unit where it is reacted with caustic solution to form sodium hypo separately. The capacity of the dechlorination units is sufficient to neutralize the waste gas of the plant. The emission of chlorine from hypo vent remains well within the limits.
- iii. **Boilers:** There are three oil boilers:
 - a) Thermax Boiler of capacity 5 MT and fuel used is H₂-Gas / Furnace Oil.
 - b) Sterling Boiler of capacity 10 MT and fuel used is H₂-Gas / Furnace Oil. Hydrogen gas, a product of the industry, is also used as fuel in the boilers which is a non polluting fuel.
 - c) Third Boiler i.e. HUSK FIRED BOILER of capacity 8 MT, Rice Husk is used as fuel having bag filters as APCD.

The design of the boilers is such that the resultant gaseous emissions are within the limits as prescribed by the regulatory agencies.

6.2.2 Emission Characteristics

The major gaseous pollutants emitted from Primo Chemicals Ltd formerly PACL, Naya Nangal are hydrochloric acid vapor and mist from HCl plant, hydrogen from hydrogen vent and chlorine from hypo stack. The industry is continuously monitoring their stacks through out the year and results are submitted every month to Punjab Pollution Control Board. The emission characteristics of different stacks of Unit-I and Unit-II are given in Table 6.4 and 6.5.

TABLE-6.5

Month	Membrane C	ell, Unit-I	Membrane Cell, Unit-II			
	Hypo Stack	HCL Stack	Hypo Stack	HCl Stack		
	Chlorine, mg/m ³	HCl, mg/m ³	Chlorine, mg/m ³	HCl, mg/m ³		
April, 2022	3.29	3.31	3.14	3.99		
May, 2022	3.47	3.03	3.39	3.73		
June, 2022	3.78	3.89	3.78	3.89		
July, 2022	3.31	2.80	3.42	4.25		
August, 2022	3.43	2.92	3.42	3.89		
September, 2022	3.07	3.16	3.19	3.65		
October, 2022	2.72	3.29	3.23	3.37		
November, 2022	2.84	3.12	2.89	3.16		
December, 2022	2.40	2.73	2.38	2.79		
January, 2023	2.37	-	2.36	2.67		
February, 2023	2.60	2.95	2.72	3.02		
March, 2023	2.60	2.95	2.72	2.83		

STACK MONITORING DATA (MONTHLY)

TABLE-6.6

SOURCES OF AIR EMISSIONS AND POLLUTION LOAD IN UNIT-I & II (2022-2023)

Sl. No.	Source of Air Pollution	Pollutant	Avg. Con (n	ic. of Pollutants ng/Nm³)	Pollution Load (kg./day)		
			Unit-I	Unit-II	Unit-I	Unit-II	
1.	HCI Vent	HC1	4.47	4.44	8.94 X 10^-3	8.88 X 10^-3	
2.	Hypo Stack	Chlorine	3.99	4.22	7.98 X 10^-3	8.44 X 10^-3	

6.3 SOLID WASTE

6.3.1 Source

There is continuous generation of non-hazardous waste from the process of PACL. Following are the sources of its generation.

Sl. No.	Туре	Source	• • • • • • • • • • • • • • • • • • • •
1.	Non-hazardous solid waste	Saturator	• • • • • • • • • • • • • • • • • • • •

(Brine sludge)

Precipitation tank Chemical tank/pits Drum filter/Decanter Brine clarifier

......

6.3.2 Generation

The total non-hazardous waste generated from Primo Chemicals Ltd. formerly known as PACL for the assessment year 2022-2023 was 4278.247 MT (wet basis) and 2735.874 MT (dry basis). The quantities of sludge generated from Unit-I and Unit-II from different sections are given in Table-6.7 and 6.8.

<u>Table – 6.7</u>

QUANTITY OF SLUDGE FROM PACL SOLID WASTE (BRINE SLUDGE) PER MONTH

Moth	Basis		Membra	ane Cell, Unit-I		Membrane Cell, Unit-II			
		Brine	Brine	Brine sludge	Sludge	Brine	Brine	Brine sludge	Sludge
		sludge	sludge	from	from	sludge	sludge	from	from
		from	from	precipitation	brine	from	from	precipitation	brine
		drum	brine	tanks/	saturator,	drum	brine	tanks/	saturator,
		filter/	sludge	vessels, MT	MT	filter/	sludge	vessels, MT	MT
		decanter,	pits,			decanter,	pits,		
		MT	MT			MT	MT		
April, 2022	Wet	0.000	0.000	0.000	0.000	291.910	30.168	0.000	0.000
	Dry	0.000	0.000	0.000	0.000	185.071	19.338	0.000	0.000
May 2022	Wet	0.000	0.000	0.000	0.000	236.380	143.196	0.000	0.000
1111 y, 2022	Dry	0.000	0.000	0.000	0.000	152.700	90.930	0.000	0.000
June 2022	Wet	0.000	0.000	0.000	0.000	219.220	100.800	12.400	0.000
June, 2022	Dry	0.000	0.000	0.000	0.000	137.890	60.480	8.003	0.000
Luly 2022	Wet	0.000	0.000	0.000	0.000	106.200	201.820	0.000	26.148
July, 2022	Dry	0.000	0.000	0.000	0.000	64.846	122.908	0.000	16.813
Assessed 2022	Wet	0.000	0.000	0.000	0.000	221.062	133.285	20.095	15.928
August, 2022	Dry	0.000	0.000	0.000	0.000	138.827	83.170	12.600	10.003
Santambar 2022	Wet	0.000	0.000	0.000	0.000	157.566	136.450	78.171	24.479
September,2022	Dry	0.000	0.000	0.000	0.000	98.794	86.100	50.811	15.520
October 2022	Wet	0.000	0.000	0.000	0.000	286.714	31.386	0.000	26.950
October, 2022	Dry	0.000	0.000	0.000	0.000	184.071	20.150	0.000	17.559
November 2022	Wet	0.000	0.000	0.000	0.000	289.788	30.890	44.400	29.120
November,2022	Dry	0.000	0.000	0.000	0.000	186.913	19.850	28.200	18.200
December 2022	Wet	0.000	0.000	0.000	0.000	222.500	94.802	46.542	0.000
December, 2022	Dry	0.000	0.000	0.000	0.000	138.840	58.620	29.042	0.000
Laura arms 2022	Wet	0.000	0.000	0.000	0.000	285.578	22.325	0.000	26.850
January, 2023	Dry	0.000	0.000	0.000	0.000	180.200	13.400	0.000	16.872
E-1 0000	Wet	0.000	0.000	0.000	0.000	218.076	92.823	33.450	18.100
February, 2023	Dry	0.000	0.000	0.000	0.000	138.260	58.850	21.677	11.400
March 2022	Wet	0.000	0.000	0.000	0.000	284.076	26.433	0.000	12.166
Warch, 2023	Dry	0.000	0.000	0.000	0.000	178.400	16.600	0.000	7.640

<u>Table – 6.8</u>

Sludge	Uni	it-I	Uni	i t-11	To	tal			
	Wet (X1)	Dry (Y1)	Wet (X2)	Dry (Y2)	Wet (X1+X2)	Dry (Y1+Y2)			
Brine Sludge from Drum Filter/Decanter (MT)	0.000	0.000	2819.070	1784.812	2819.070	1784.812			
Brine Sludge from brine sludge Pits, MT	0.000	0.000	1044.378	650.396	1044.378	650.396			
Brine Sludge from precipitation Tanks / Vessels, MT	0.000	0.000	235.058	150.333	235.058	150.333			
Sludge from brine saturator, MT	0.000	0.000	179.741	150.333	179.741	150.333			
Total Solid Waste Generated, MT	0.000	0.000	4278.247	2735.874	4278.247	2735.874			

QUANTITY OF SLUDGE FROM PACL SOLID WASTE (BRINE SLUDGE)

6.3.3 Characteristics of Solid waste generated.

Quality of solid wastes generated is continuously monitored and recorded. The characteristics of solid waste generated from various sections during the year 2021-2022 are given in table 6.9.

<u>Table - 6.9</u> <u>PUNJAB ALKALIES & CHEMICALS LTD.</u>

Average Quality of Brine Sludge Generated During Year 2022-2023

Sl. No.	Parameter	Unit	Membrane Cell, Unit-I	Membrane Cell, Unit-II
1	Loss on Drying (water)	%		36.70
2	NaCl	%		6.90
3	Calcium as CaCO3	%		10.60
4	Magnesium as Mg(OH)2	%		9.20
5	Acid insoluble	%		36.60

POLLUTION CONTROL

7.1 EFFLUENT TREATMENT

The industry has two process streams (Unit-I & Unit-II) to produce caustic soda and chlorine with membrane cell technology. Each process unit is having separate effluent treatment plant. The effluent from various sections such as Primary Brine Section, Secondary Brine Section, DM Water, Cell House, HCl Plant, Utility Section, Boiler Section etc., are taken to the effluent treatment plant through in-plant effluent collection channels. The streams may be acidic or alkaline in nature. There is no other contamination in the effluent. The effluent is neutralized by proper pH adjustment by adding caustic or HCl and is finally pumped to RO plant for further treatment and the return water from RO is used in the process in cooling towers as makeup water and RO reject is send to MEE(Evaporators). MEE permeate is taken in the permeate pit for use in cooling towers and MEE rejects is taken in the drying beds from where MEE sludge is collected and filled in properly labeled LDPE bags and same is stored separately and sent to common TSDF facility at Nimbua. Left behind leachate from drying beds is collected in a separate low lying pit, from where it is pumped to RO reject pit for feeding to MEE.

Effluent Treatment Plant in Unit-I

The flow diagram of effluent treatment plant is given in Fig. 7.1. Effluent treatment plant in unit-I has one collection pit, two settling chambers and one final chamber. Size and capacity of unit-I ETP is as under:

Pit/Chamber	Size		
Units	Length	Breadth	Depth
Collection pit	1.3 M	1.3 M	2.1 M
Mixing cum settling chamber-I	7.75 M	5.70 M	3.3 M
Mixing cum settling chamber-II	7.75 M	5.70 M	3.3 M
Treatment Chamber	10.9 M	4.6 M	3.3 M
		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••

Effluent Treatment capacity: 500 m³/day

Effluent from various sections of Unit-I & Unit-II is collected in the collection pit and is taken to one of the two settling chambers where it is allowed to mix properly. Spurger's are provided for spurging compressed air. After proper mixing it is allowed to settle. One settling chamber remains under operation while the other is kept as a standby, which is taken into line when last one is taken out for mixing and settling.

From the mixing cum settling chambers, the effluent is pumped to treatment chamber where a chemical such as caustic soda or HCl is added from overhead storage tank for pH adjustment of the effluent. pH is continuously monitored and the required caustic or hydrochloric acid is added. Air is passed through spurges provided in the chamber for proper mixing and it is circulated through a pump. The capacity of the pump is $40m^3/hr$. After the pH is maintained at round 8, the effluent is pumped through HDPE pipeline to RO plant (capacity $300m^3/day$) for further purification to achieve the desired TDS value of less than 500 ppm. The RO return water is used in the process in cooling towers as makeup water and RO reject is send to MEE(Evaporators). MEE permeate is taken in the permeate pit for use in cooling towers and MEE rejects is taken in the drying beds from where MEE sludge is collected and filled in properly labeled LDPE bags and same is stored separately and sent to common TSDF facility at Nimbua. Left behind leachate from drying beds is collected in a separate low lying pit, from where it is pumped to RO reject pit for feeding to MEE.

Fig 7.1 Flow Charts –Effluent Treatment Plant, Unit-1

Table – 7.1

Treated Effluent Quality (2022-2023)

S1. No.	Parameter	Concentration Values							
		Min.	Max.	Avg.					
1	pH	6.5	7.5	7.2					
2	Total Suspended solids	18	25	21					
3	Total Residual Chlorine	Nil	Nil	Nil					

Note:- Except pH all values are in mg/1

7.2 AIR POLLUTION CONTROL

Chlorine gas and HCl fumes are the main sources of air pollution generated in the plant from various process streams, tanks, vessels, process equipments, pipe lines during manufacturing, storing or handling of chlorine etc. All the fugitive emissions of chlorine gas are sucked through a blower and are passed through waste air dechlorination unit where waste chlorine gas is neutralized with caustic soda solution. Similarly HCl fumes generated from the storage tank and during HCl preparation are taken to the above unit where it is neutralized with the alkali.

Chlorine gas produced in the electrolyzer is taken for cooling, drying, compression and liquefaction for making liquid chlorine. The unliquidified chlorine gas is known as sniff gas which is taken to HCl plant for burning with hydrogen to make HCl and the sniff gas which can not be burned in HCl plant is taken to waste air dechlorination units. If the hydrogen content in the chlorine is higher then the sniff gas will have higher percentage of hydrogen gas. Beyond 4% hydrogen in chlorine forms explosive mixture and therefore the liquefaction efficiency is maintained to keep the hydrogen percentage in sniff chlorine gas below 4%. Thus, it is possible to liquify the gas to a maximum possible in membrane cell plant.

Under normal plant conditions, about 1000 kgs. of chlorine gas is required to be neutralized in Unit-I and 2500 kgs of chlorine is required to be neutralized in Unit-II.

A unit wise detail of the air pollution treatment and control system is given below:

In the waste air dechlorination plant of Unit-I, there are three sodium hypo towers where caustic soda and chlorine reacts counter currently. The waste chlorine gas enters into the first tower and the caustic soda enters into third tower. The caustic overflows from the third tower, goes to second tower and the overflow from the second tower goes to the first tower. Chlorine reacts with the caustic in the first tower and forms sodium hypochlorite, which overflows to the sodium hypo receiver and is withdrawn periodically as a product. The unneutralized chlorine gas goes to the second tower where it reacts with caustic solution to make weak sodium hypo. The third tower acts as a buffer tower. In case, un-reacted chlorine gas leaves the second tower, then the same will get neutralized in that tower. In case of excess flow of chlorine to the first tower, the same is controlled/neutralized by automatic opening of caustic lye to the hypo tower no. I.

1. The flow of chlorine gas and caustic to the first tower is controlled by reduction Potential which is measured continuously in the first tower.

2.	Neutralization capacity of the plant	=	5 N	/IT/da	ny of	f chlorine g	gas
3. ead	Caustic circulation pump capacity ch	=	2	Nos.	20	m ³ /hour	capacity
4. ead	Hypo circulation pump capacity	=	3	nos.	60	m ³ /hour	capacity

Unit-II

In the waste air dechlorination plant of unit-II there are four sodium hypo towers where caustic soda and chlorine reacts counter currently. Under normal plant operation, waste chlorine gas from all sections of the plant is first taken to the sodium hypo towers where sodium hypo chlorite is formed by absorbing chlorine gas in caustic soda lye. Sodium Hypo Chlorite is collected in receiver and is withdrawn periodically as a product. The unreacted chlorine gas is further passed to 2nd and 3rd tower for complete absorption in caustic soda lye and the final product is collected for sale. Similarly when the first sodium hypo tower gets exhausted the second hypo is taken in line.

- i. Neutralization capacity of sodium hypo plant = 1000 kg/hr. chlorine gas
- ii. Pump capacity
- iii Sodium hypo circulation pump capacity = $6 \text{ nos. } 100 \text{ m}^3 / \text{hr. each}$

HCI Vapors

Each HCI furnace is provided with tail gas absorber. HCI vapor from the first absorber of the HCI furnace is taken to the tail gas absorber where acid mist is absorbed in waste to make weak HCI acid, the same is fed to the first absorber.

HCI vapor from tanks is taken to the waste air dechlorination unit for neutralization through the exhaust blower and pipeline arrangement.

A new HCI absorber has been installed in unit II to absorb all the gas from the road tanker during filling.

In order to keep a watch on the emission from various stacks, periodic monitoring of emission is carried out. Apart from this, ambient air quality is also monitored from time to time. The average ambient quality monitored at Primo Chemicals Ltd. is given in Table-7.2.

<u> Table – 7.2</u>

	Location of			Parameter									
Month	Respirable dust	PM _{10,}	PM _{2.5,}	SO _{2,}	NO _{2,}	CO,	$NH_{3,}$	O _{3,}	Pb	As,	Ni,	C ₆ H6	B(a)P
	sampler	µg/m ³	µg/m ³	µg/m ³	µg/m ³	mg/m ³	µg/m³	$\mu g/m^3$	µg/m ³	ng/m ³	ng/m ³	µg/m ³	ng/m ³
April,	Railway siding	34	28	24	26	0.4	162	34	Nijl	Nijl	Nil	Nil	Nil
2022	area	51	20	21	20	0.1	102	51	1 111	111	1 111	1 111	1 111
May,	Railway siding	34	28	24	24	0.4	160	34	Nil	Nii	Nil	Nil	Nil
2022	area	54	20	21	21	0.4	100	51	1111	1111	1111	1111	1 111
June,	Railway siding	30	28	25	28	03	162	36	Nijl	Nijl	Nil	Nil	Nil
2022	area	50	20	20	20	0.5	102	50	1111	1111	1111	1111	1 111
July,	Railway siding	32	28	26	28	0.4	160	34	Nijl	Nijl	Nil	Nil	Nil
2022	area	52	20	20	20	0.1	100	51	1 111	111	1 111	1 111	1 111
Aug.	Railway siding	36	28	28	26	0.5	162	36	Nijl	Nijl	Nil	Nil	Nil
2022	area	50	20	20	20	0.5	102	50	1111	1111	1111	1111	1 111
Sep.	Railway siding	32	28	26	24	0.4	160	34	Nijl	Nijl	Nil	Nil	Nil
2022	area	52	20	20	21	0.4	100	51	1111	1111	1111	1111	1 111
Oct.	Railway siding	30	28	24	26	0.5	162	34	Nijl	Nijl	Nil	Nil	Nil
2022	area	50	20	21	20	0.5	102	51	1111	1111	1111	1111	1 111
Nov.	Railway siding	37	28	26	24	0.4	160	32	Nijl	Nijl	Nil	Nil	Nil
2022	area	52	20	20	24	0.4	100	52	1111	1111	1111	1111	1 111
Dec.	Railway siding	28	28	22	24	0.2	160	30	Nijl	Nijl	Nil	Nil	Nil
2022	area	20	20	22	24	0.2	100	50	1111	1111	1111	1111	1111
Jan.	Railway siding	30	26	24	26	0.6	162	34	NJI	NGI	NH	NH	NH
2023	area	50	20	24	20	0.0	102	54	1111	1111	1111	1111	1111
Feb.	Railway siding	20	26	22	24	0.2	160	20	NI;1	NI;1	NI;1	NI;1	NI:1
2023	area	20	20	22	24	0.2	102	30	1111	1111	INII	1111	INII
March	Railway siding	28	26	26	24	0.4	160	32	NJI	Nijl	Nil	Nil	NH
2023	area	20	20	20	<u>7</u> 4	0.4	100	52	1111	1111	1111	1111	1 1 11

PUNJAB ALKALIES & CHEMICALS LIMITED, NAYA NANGAL AMBIENT AIR MONITORING DATA (MONTHLY)

<u>Table – 7.3</u>

PUNJAB ALKALIES & CHEMICALS LIMITED, NAYA NANGAL AMBIENT AIR MONITORING DATA Average Annual data 2022-2023

Sl. No.	Location of High Volume Sampler	Parameters						
		Chlorine, µg/m³	HCl, μg/m ³	SPM, μg/m ³				
1.	Railway Siding Area	NIL	NIL	43.52				
2.	Near Electrical Sub- station	NIL	NIL	40.57				
3.	Near South-west Boundary	NIL	NIL	40.98				

Note:- At all the locations, ambient air found within the prescribed limit (prescribed limit of SPM = $500 \ \mu g/m^3$)

For ambient air monitoring three locations were selected to cover the entire plant area. The distance, direction and position selected for high volume sampler are as follows:-

<u>Table - 7.4</u>

AIR MONITORING LOCATIONS

S1. No.	Location	Distance from Centre of the Plant	Direction
1.	Railway siding area	300 meters	Е
2.	Electrical sub-stations	250 meters	Ν
3.	Near South-West Boundary	200 meters	S -W

7.3 SOLID WASTES GENERATION (BRINE SLUDGE)

The brine sludge presently generated in plant is non-hazardous as per Schedule – 1 of the hazardous waste Management & Handling Rules 2016 and the same is being stored in active brine sludge pit.

7.4 NON HAZARDOUS WASTE STORAGE (BRINE SLUDGE WASTE STORAGE FROM OLD MERCURY PROCESS)

Approx 26642 M.T of Sludge generated earlier in Mercury cell process(till 1998) is stored in environment friendly impervious brine sludge pit No-1 and the same is closed with good earth and over grown with the green plants. The sludge samples @ different depths were got tested twice in the past from NABL lab to check Mercury if any. Mercury was not detected and accordingly the industry as retain to PPCB for declaring mercury bearing brine sludge as non-hazardous as the same has become inert over a period of about 24 years.

7.5 HAZARDOUS WASTE GENERATION

(A) Used Transformer Oil and Used Lubricating Oil

Used transformer oil and used lubricating oil are the hazardous wastes generated from the process. These wastes are disposed by sale to authorized preprocessors under intimation to PPCB. Quantities of waste transformer oil and used lubricating oil generated during the year 2022-2023 are given below.

(i)	Used Transformer Oil	NIL Liter
(ii)	Used Lubricating Oil	NIL Liter

7.6 GROUND WATER QUALITY MONITORING

Ground water samples from five hand pumps installed inside the plant Premises at locations authorized by Punjab Pollution Control Board are regularly tested twice in every month and reports submitted to PPCB on monthly basis.

Hand pump no.	Location
1	Near Horticulture Nursery
2	Near NFL Boundary
3	Opposite Stores Building
4	Near Raw Water Storage Tank

Physio-chemical qualities of ground water from above hand pumps tested during the year 2022-2023 are detailed in tables 7.6 (1), 7.6(2). 7.6 (3) and 7.6 (4) .

Table-7.6(1) THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP AT HORTICULTURE NURSERY

Parameter	Parameter April 2022		il 2022 May 2022		June	June 2022 July 202		July 2022		st 2022	Septem	ber 2022
Date of Sampling	06.04.2022	25.04.2022	05.05.2022	22.05.2022	08.06.2022	29.06.2022	05.07.2022	26.07.2022	06.08.2022	30.08.2022	06.09.2022	27.09.2022
рН	7.5	7.6	7.6	7.5	7.07	8.00	8.10	8.32	7.97	8.20	8.20	8.30
Total Dissolved Solids,(mg/l)	288	286	288	288	330	340	240	221	278	340	320	370
Hardness(Total) as CaCO ₃ ,(mg/l)	246	252	252	250	280	280	220	140	160	160	150	110
Chlorides as CaCO ₃ , (mg/1)	16	16	16	16	4	6	90	115	140	177	130	190
Sulphate as SO ₄ , (mg/l)	12	14	14	14	20	25	30	25	20	25	20	20
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/1	:	2000
Total Hardness, mg/1	:	600
Chlorides as $CaCO_3$, mg/l	:	1000
Sulphate as SO_4 , mg/l	:	400
Mercury, mg/1	:	No Relaxation

 Table-7.6(1) (Contd...)

 THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP AT HORTICULTURE NURSERY

Parameter	Octobe	er 2022	Novem	ber 2022	Deceml	ber 2022	January 2023		22 January 2023		January 2023 February 2023		March 2023	
Date of Sampling	04.10.2022	28.10.2022	03.11.2022	29.11.2022	06.12.2022	27.12.2022	03.01.2023	31.01.2023	07.02.2023	28.02.2023	07.03.2023	28.03.2023		
рН	8.10	8.20	8.20	8.20	7.80	7.20	7.25	7.40	7.20	7.70	7.80	7.67		
Total Dissolved Solids,(mg/l)	310	320	320	300	320	328	330	345	350	370	376	389		
Hardness(Total) as CaCO ₃ ,(mg/l)	120	120	120	110	125	130	132	140	142	148	150	130		
Chlorides as CaCO ₃ , (mg/l)	135.5	35.5	135.5	117.5	117.5	117.5	117.5	120	122	132	132	132		
Sulphate as SO ₄ , (mg/l)	25	25	25	20	25	20	20	25	20	20	20	20		
Mercury (mg/l)	Nil	Nil	Nil	Nil	Nil	Nil								

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit. At all the location noise found within the prescribed limit.

:	6.5-8.5
:	2000
:	600
:	1000
:	400
:	No Relaxation
	: : : : : : : : : : : : : : : : : : : :

Table-7.6(2) THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED NEAR NFL BOUNDARY

Parameter	Apri	1 2022	May	2022	June	2022	July 2022		July 2022		July 2022		August 2022		September 2022	
Date of Sampling	06.04.2022	25.04.2022	05.05.2022	22.05.2022	08.06.2022	29.06.2022	05.07.2022	26.07.2022	06.08.2022	30.08.2022	06.09.2022	27.09.2022				
pН	7.5	7.5	7.6	7.5	7.5	7.61	7.5	8.12	7.5	7.8	7.80	8.00				
Total Dissolved Solids,(mg/l)	290	290	290	288	300	277	250	260	240	290	284	300				
Hardness(Total) as CaCO ₃ ,(mg/l)	252	250	250	252	250	240	200	120	135	140	140	130				
Chlorides as CaCO ₃ , (mg/l)	16	16	16	16	35	30	50	140	165	190	220	240				
Sulphate as SO ₄ , (mg/l)	15	16	15	14	20	25	30	25	30	20	30	20				
Mercury (mg/l)	NIL															

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit. At all the location noise found within the prescribed limit.

pH	:	6.5-8.5
Total Dissolved Solids, mg/1	:	2000
Total Hardness, mg/1	:	600
Chlorides as $CaCO_3$, mg/l	:	1000
Sulphate as SO_4 , mg/l	:	400

<u>Table-7.6(2)</u> <u>THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED NEAR NFL BOUNDARY</u>

Parameter	Octobe	er 2022	Novemb	oer 2022	Deceml	oer 2022	January 2023		January 2023 February 202		March 2023	
Date of Sampling	04.10.2022	28.10.2022	03.11.2022	29.11.2022	06.12.2022	27.12.2022	03.01.2023	31.01.22023	07.02.2023	28.02.2023	07.03.2023	28.03.2023
pН	8.10	8.20	8.20	8.00	8.00	7.95	7.70	7.80	7.60	7.80	7.70	8.00
Total Dissolved Solids,(mg/l)	318	330	330	350	330	340	320	330	332	340	346	358
Hardness(Total) as CaCO ₃ ,(mg/l)	140	120	120	130	120	120	120	126	116	122	120	140
Chlorides as CaCO ₃ , (mg/l)	200	220	220	200	177.5	177.5	177.5	180	177.5	142	132	142
Sulphate as SO ₄ , (mg/l)	20	20	20	25	20	20	20	25	25	20	20	20
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL						

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

:	6.5-8.5
:	2000
:	600
:	1000
:	400
:	No Relaxation
	: : : : : : : : : : : : : : : : : : : :

	<u>Table-7.6(3)</u>
THE PHYSICO-CHEMICAL Q	<u>UALITY OF HAND PUMP LOCATED OPPOSITE STORES</u>

Parameter	Apri	1 2022	May	7 2022	June	2022	July	2022	Augus	t 2022	Septeml	oer 2022
Date of Sampling	06.04.2022	25.04.2022	05.05.2022	25.05.2022	08.06.2022	29.06.2022	05.07.2022	26.07.2022	06.08.2022	30.08.2022	06.09.2022	27.09.2022
pН	7.6	7.5	7.5	7.5	7.80	7.70	7.80	8.00	8.10	8.40	8.30	8.40
Total Dissolved Solids,(mg/l)	282	292	290	288	350	343	380	370	380	386	400	390
Hardness(Total) as CaCO ₃ , (mg/l)	250	254	254	254	290	280	250	230	140	150	160	140
Chlorides as $CaCO_{3}$, (mg/1)	16	16	16	18	45	50	85	13	14	17	140	190
Sulphate as SO ₄ , (mg/l)	14	15	14	15	25	20	25	25	20	25	25	25
Mercury (mg/l)	NIL											

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

рН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/1	:	600
Chlorides as $CaCO_3$, mg/l	:	1000
Sulphate as SO ₄ , mg/l	:	400
Mercury, mg/l	:	No Relaxation

<u>Table-7.6(3)</u>
THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP LOCATED OPPOSITE STORES

Parameter	October 2022		November 2022		December 2022		January 2023		February 2023		March 2023	
Date of Sampling	04.10.2022	28.10.2022	03.11.2022	29.11.2022	06.12.2022	27.12.2022	03.01.2023	31.01.2023	07.02.2023	28.02.2023	07.03.2023	28.03.2023
рН	8.10	8.00	8.20	8.10	7.90	7.85	7.50	7.60	7.50	8.10	8.00	7.80
Total Dissolved Solids,(mg/l)	370	410	410	400	385	400	412	430	432	422	420	425
Hardness(Total) as CaCO ₃ , (mg/l)	120	140	140	150	130	132	136	132	132	120	132	132
Chlorides as CaCO ₃ , (mg/1)	130	135.5	135.5	142.4	135.5	135.5	130.2	137.5	140	142	136	142
Sulphate as SO ₄ , (mg/l)	25	20	20	25	20	20	20	20	20	20	20	20
Mercury (mg/l)	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

3.5
)
)
Relaxation

 Table-7.6(4)

 THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR RAW WATER STORAGE TANK

Parameter	Apr	il 2022	May	2022	June	2022	July	2022	Augus	st 2022	Septem	ber 2022
Date of Sampling	06.04.2022	25.04.2022	05.05.2022	22.05.2022	08.06.2022	29.06.2022	05.07.2022	26.07.2022	06.08.2022	30.08.2022	06.09.2022	27.09.2022
pН	7.5	7.5	7.5	7.5	7.7	8.0	8.1	8.2	8.11	8.3	7.10	8.20
Total Dissolved Solids, (mg/l)	290	288	286	290	320	300	250	225	256	290	310	390
Hardness (Total) as CaCO ₃ , (mg/l)	248	256	248	252	270	250	220	176	120	130	140	120
Chlorides as CaCO ₃ , (mg/1)	17	18	18	18	45	70	85	117	140	190	210	220
Sulphate as SO ₄ , (mg/l)	14	15	15	16	35	30	25	20	25	20	25	20
Mercury (mg/l)	NIL											

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

:	6.5-8.5
:	2000
:	600
:	1000
:	400
:	No Relaxation
	::

Table-7.6(4) THE PHYSICO-CHEMICAL QUALITY OF HAND PUMP NEAR RAW WATER STORAGE TANK

Parameter	Octob	er 2022	Noveml	ber 2022	Decem	ber 2022	Januar	ry 2023	Februa	ry 2023	Marcl	h 2023
Date of Sampling	04.10.2022	28.10.2022	03.11.2022	29.11.2022	06.12.2022	27.12.2022	03.01.2023	31.01.2023	07.02.2023	28.02.2023	07.03.2023	28.03.2023
pН	8.00	8.10	8.10	8.40	8.00	7.80	7.60	7.65	7.60	7.90	7.60	7.80
Total Dissolved Solids, (mg/l)	410	420	420	425	412	400	415	400	403	392	388	378
Hardness (Total) as CaCO ₃ , (mg/l)	110	120	120	110	100	120	122	132	130	132	130	142
Chlorides as $CaCO_3$, (mg/1)	177	135.5	135.5	145.07	135.5	135.5	135.5	130	132	130	132	130
Sulphate as SO_4 , (mg/l)	25	20	20	25	20	20	20	25	25	20	20	20
Mercury (mg/l)	NIL											

The samples were colourless and odourless. Free Chlorine, Total Chlorine, and Ammonia were below detection limit.

At all the location noise found within the prescribed limit.

pН	:	6.5-8.5
Total Dissolved Solids, mg/l	:	2000
Total Hardness, mg/l	:	600
Chlorides as CaCO ₃ , mg/l	:	1000
Sulphate as SO_4 , mg/l	:	400
Mercury, mg/l	:	No Relaxation

7.6 POLLUTION CONTROL AND TESTING LABORATORY IN PACL

A well-equipped laboratory with qualified and trained manpower and also with modern analytical instruments is in round the clock functioning in PACL. A list of instruments and other lab equipments available if PACL lab is given below in table no. 7.7(1).

LIST OF INSTRUMENTS IN POLLUTION CONTROL LABORATORY

S1.	Name of Equipment /	Ind./	Quantity	Year of
No.	Instrument	Imported	(Nos.)	Mfg.
1.	Gas Chromatograph	Indigenous(AIMIL / NUCON)	01	2018
2.	Gas Chromatograph	Indigenous-do-	01	2018
3.	DR 6000 Spectrophotometer	Imported(HACH)	01	2018
4.	Balance Electrical	Indigenous	01	2005
5.	DR 3900 Spectrophotometer	Imported(HACH)	01	2016
6.	Electronic Balance ME204	Imported (Mettler)	01	2014
7.	Electronic Balance ME204	Imported (Mettler)	01	2017
8.	Electronic Balance ML 204T	Imported (Mettler	01	2018
9.	pH Meter	Indigenous	01	2017
10.	Conductivity Mtere	Imported(HACH)	01	2013
11.	Turbidity Meter	Indigenous	01	2019
12.	AVIO 200_ICP-OES	Imported PERKINELMER	01	2019
13.	Mufflle Furnace PT-350	Indigenous	01	2019
14.	Hot Air Oven ACM-22066T	Indigenous	01	2019
15.	Bomb Calorimeter-Digital	Indigenous	02	2019
16.	High volume Samplers APM-430	Indigenous	03	2017
17.	Handy Sampler APM-821	Indigenous	01	2019
18.	Stack Kit VSS1	Indigenous	01	2019
19.	Flue Gas Analyser & Stack Monitoring Testo-340	Indigenous	01	2019
20.	Portable Oxygen Gas Analyser 101-HH	Indigenous	01	2017
21.	Sound Level Meter	Testo 815	01	2022

7.8 NOISE LEVEL MONITORING INSIDE THE PLANT

Noise level monitoring is carried out on monthly schedule at various plant locations to check and control noise pollution. Observations are recorded. Average noise levels measured at five locations of plant boundaries are given below.

Sl. No	Location	Noise Level dB(A)
1	Near Gate No-1 (North West)	62.0
2	Near Gate No-2 (West direction)	60.0
3	North West Boundary	60.0
4	Railway Siding (Eastern boundary)	62.0
5	South Side Corner	60.0

At all the location noise found with in the prescribed limit.

ENERGY CONSUMPTION FOR POLLUTION CONTROL

8.1 ENERGY CONSUMPTION FOR POLLUTION CONTROL

Energy consumption for running liquid and air pollution control equipments and for solid waste handling in both units are monitored and records are maintained on daily and monthly basis. Consumption reports are sent to PPCB on monthly basis.

The energy consumption for water and air pollution control equipment and for solid waste handling for Unit-I and Unit-II are given in Table-8.1.1

Table - 8.1.1

ENERGY CONSUMPTION FOR POLLUTION CONTROL FOR THE PERIOD APRIL 2022 TO MARCH 2023 (IN KWH UNIT)

MONTH	Solid Waste Pollution Control Equipments			Liquid Effluents Pollution Control Equipments			Air Pollution Control Equipments		
	U – 1	U – 2	TOTAL	U - 1	U – 2	TOTAL	U - 1	U – 2	TOTAL
April 22	3240	8300	11540	312	5870	6182	15867	35600	51467
May 22	5352	8420	13772	150	6030	6180	16890	36800	53690
June 22	4944	8480	13424	240	6110	6350	16524	38000	54524
July 22	5880	9000	14880	156	6180	6336	17709	38800	56509
August 22	5496	8800	14296	102	6084	6186	19860	37000	56860
September 22	0	9460	9460	34554	6184	40738	19123	37960	57083
October 22	0	9500	9500	40813	6190	47003	23925	37800	61725
November 22	0	9480	9480	41852	6184	48036	19800	37760	57560
December 22	0	9370	9370	36978	6176	43154	16961	37680	54641
January 23	0	9400	9400	43242	6180	49422	16715	37880	54595
February 23	0	9390	9390	39352	6186	45538	19832	37720	57552
March 23	0	9530	9530	55322	6202	61524	21787	37960	59747
Total	24912	109130	134042	293073	73576	366649	224993	450960	675953
Average	2076	9094.17	11170.2	24422.8	6131.33	30554.1	18749.4	37580	56329.4

BY-PRODUCT RECOVERY

- 9.1 Hydrochloric Acid, Sodium Hypo Chlorite and Spent H₂SO₄ are established byproducts in a chlor-alkali plant, caustic soda being the principal product.
- 9.2 Sulphuric Acid is used for drying Chlorine .The dilute spent H₂SO₄ generated from the plant is sold as a by-product.

AFFORESTATION

10.1 GENERAL

Ecological degradation has assumed alarming proportions as the rapid pace of environmental destruction through deforestation and pollution etc. is affecting the lives of millions of people all over the country.

Primo Chemicals Ltd. being environmentally conscious have been taking all precautionary measures right from the design stage for the prevention of water and environmental pollution due to the effluent and wasteful products from their factory and are contributing their mite to combat this problem by planting trees on a massive scale in and around Naya Nangal.

10.2 The management of M/s Primo Chemicals Ltd. is alive to the necessity of the conservation of natural resources. In its continued efforts, Primo Chemicals Ltd. has planted the following trees and shrubs in its drive for afforestation.

Sl. No.	Variety	No. of Trees		
1.	Phycus	2844		
2.	Phycuspanda	2405		
3.	Conocarpus	50		
4.	Golden Bamboo	3168		
5.	Guava	240		
6.	Arjun	181		
7.	Sita Ashoka	14		
8.	Putranjeeva	75		
9.	Foxtail Palm Small	25		
10.	Ashoka Pendula	75		
11.	Ashoka Pendula Big	228		
12.	Silveroak	523		
13.	Jamun	236		
14.	Kachnaar	53		
15.	Alstonia	85		
16.	Traveller Palm	12		
17.	Heavycus	2317		
18.	Bottle Brush	228		
19.	Chakrassia	286		
20.	Guller	200		
21.	Siris	200		

POSITION OF PLANTATION IN PACL FACTORY / COLONY

22.	Pilkhan	363		
23.	Molsarry	423		
24.	American Dek	915		
25.	Tipori	16		
26.	Buddha Bamboo	588		
27.	Uniprus Green	50		
28.	Bottlepalm	207		
29.	Aamrass	50		
30.	Golden Cyprus	111		
31.	Cigium Dwaraf	254		
32.	Bluepine	50		
33.	Neem	62		
34.	Bismarkia Palm	21		
35.	Foxtail Palm Small	35		
36.	Celendra	22		
37.	Timber Verity	100		
38.	Tikoma	536		
39.	Ferm	50		
40.	Eucallypus	1161		
41.	Phycuspanda Big	800		
42.	Phycus Big	793		
43.	Golden Bamboo	110		
44.	Lady Palm	124		
45.	Ashoka Pondula	477		
46.	Bottle Palm	88		
47.	Kanak Champa	375		
48.	Australian Kiker	77		
49.	Batsin Dek	78		
50.	Cassia Glauca	59		
51.	Chandni	16		
52.	Amaltas	60		
53.	Tad Palm	100		
54.	Palmeria Champa	60		
55.	Coral Tree	4		
56.	Kaneer	42		
57.	Lejestonia	37		
58.	Boganvillia	85		
59.	Saru	5		
60.	Morpankhi	9		
61.	Nauleena	4		
62.	Sabool	1147		
63.	Aaricapalm	45		

64.	Cassia Siammia	32
65.	Aerucarria	6
66.	Raat Ki Rani	3
67.	Pipal	4
68.	Mango Tree	13
69.	Bamboo Palm	12
70.	Cyprus	76
71.	Gulmohri	2
72.	Lejstorimma	8
73.	Rubber Plant	12
74.	China Palm	28
75.	Phonix Palm	1
76.	Champa	2
77.	Cheel	2
78.	Phycus Palm	3
79.	Gulmohar	4
80.	Sehtoot	28
81.	Sagwan	3
82.	Phalsa	90
83.	Phycus Star Lite	4
84.	Trisool Champa	14
85.	Palmeria Champa	14
86.	Desi Bamboo	622
87.	Areca Palm	124
88.	Bela Proom	59
	Total	24220

10.3 Green Field Development Photographs

POLLUTION CONTROL